Earth potential rise
Encyclopedia
In electrical engineering
Electrical engineering
Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics and electromagnetism. The field first became an identifiable occupation in the late nineteenth century after commercialization of the electric telegraph and electrical...

, earth potential rise (EPR) also called ground potential rise (GPR) occurs when a large current
Electric current
Electric current is a flow of electric charge through a medium.This charge is typically carried by moving electrons in a conductor such as wire...

 flows to earth through an earth grid impedance
Electrical impedance
Electrical impedance, or simply impedance, is the measure of the opposition that an electrical circuit presents to the passage of a current when a voltage is applied. In quantitative terms, it is the complex ratio of the voltage to the current in an alternating current circuit...

. The potential relative to a distant point on the Earth is highest at the point where current enters the ground, and declines with distance from the source. Ground potential rise is a concern in the design of electrical substation
Electrical substation
A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions...

s because the high potential may be a hazard to people or equipment. The potential gradient (drop of voltage with distance) may be so high that a person could be injured due to the voltage developed between two feet, or between the ground on which the person is standing and a metal object. Any conducting object connected to the substation earth ground, such as telephone wires, rails, fences, or metallic piping, may also be energized at the ground potential in the substation. This transferred potential is a hazard to people and equipment outside the substation.

Causes

Earth potential rise (EPR) is caused by electrical faults that occur at electrical substations, power plants, or high-voltage transmission lines. Short-circuit current flows through the plant structure and equipment and into the grounding electrode at station. The resistance of the Earth is finite, so current injected into the earth at the grounding electrode produces a potential rise with respect to a distant reference point. The resulting potential rise can cause hazardous voltage, many hundreds of yards (metres) away from the actual fault location. Many factors determine the level of hazard, including: available fault current, soil type, soil moisture, temperature, underlying rock layers, and clearing time to interrupt a fault.

Safety

Earth potential rise is a safety issue in the coordination of power and telecommunications services. An EPR event at a site such as an electrical distribution substation
Electrical substation
A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions...

 may expose personnel, users or structures to hazardous voltages.

Step and touch potentials

"Step potential" is the voltage between the feet of a person standing near an energized grounded object. It is equal to the difference in voltage, given by the voltage distribution curve, between two points at different distances from the "electrode". A person could be at risk of injury during a fault simply by standing near the grounding point.

"Touch potential" is the voltage between the energized object and the feet of a person in contact with the object. It is equal to the difference in voltage between the object and a point some distance away. The touch potential could be nearly the full voltage across the grounded object if that object is grounded at a point remote from the place where the person is in contact with it. For example, a crane that was grounded to the system neutral and that contacted an energized line would expose any person in contact with the crane or its uninsulated load line to a touch potential nearly equal to the full fault voltage.

"Mesh potential" is a factor calculated when a grid of grounding conductors is installed. Mesh potential is the difference between the metallic object connected to the grid, and the potential of the soil within the grid. It is significant because a person may be standing inside the grid at a point with a large potential relative to the grid itself.

Mitigation

An engineering analysis of the power system under fault conditions can be used to determine whether or not hazardous step and touch voltages will develop. The result of this analysis can show the need for protective measures and can guide the selection of appropriate precautions.

Several methods may be used to protect employees from hazardous ground-potential gradients, including equipotential zones, insulating equipment, and restricted work areas.
  1. The creation of an equipotential zone will protect a worker standing within it from hazardous step and touch potentials. Such a zone can be produced through the use of a metal mat connected to the grounded object. In some cases, a grounding grid can be used to equalize the voltage within the grid. Equipotential zones will not, however, protect employees who are either wholly or partially outside the protected area. Bonding conductive objects in the immediate work area can also be used to minimize the potential between the objects and between each object and ground. (Bonding an object outside the work area can increase the touch potential to that object in some cases, however.)
  2. The use of insulating equipment, such as rubber gloves, can protect employees handling grounded equipment and conductors from hazardous touch potentials. The insulating equipment must be rated for the highest voltage that can be impressed on the grounded objects under fault conditions (rather than for the full system voltage).
  3. Restricting employees from areas where hazardous step or touch potentials could arise can protect employees not directly involved in the operation being performed. Employees on the ground in the vicinity of transmission structures should be kept at a distance where step voltages would be insufficient to cause injury. Employees should not handle grounded conductors or equipment likely to become energized to hazardous voltages unless the employees are within an equipotential zone or are protected by insulating equipment.


In cases such as an electrical substation, it is common practice to cover the surface with a high-resistivity layer of crushed stone or asphalt. The surface layer provides a high resistance between feet and ground grid and is an effective method to reduce the step and touch potential hazard.

Calculations

In principle, the potential of the earth grid Vgrid can be calculated using Ohm's Law
Ohm's law
Ohm's law states that the current through a conductor between two points is directly proportional to the potential difference across the two points...

 if the fault current (If) and resistance of the grid (Zgrid) are known.

While the fault current from a distribution or transmission system can usually be calculated or estimated with precision, calculation of the earth grid resistance is more complicated. Difficulties in calculation arise from the extended and irregular shape of practical ground grids, and the varying resistivity of soil at different depths.

At points outside the earth grid, the potential rise decreases. The simplest case of the potential at a distance is the analysis of a driven rod electrode in homogeneous earth. The voltage profile is given by the following equation.
where is a point beyond the edge of the earth grid. is the voltage at distance from the earth grid, in volt
Volt
The volt is the SI derived unit for electric potential, electric potential difference, and electromotive force. The volt is named in honor of the Italian physicist Alessandro Volta , who invented the voltaic pile, possibly the first chemical battery.- Definition :A single volt is defined as the...

s. is the resistivity
Resistivity
Electrical resistivity is a measure of how strongly a material opposes the flow of electric current. A low resistivity indicates a material that readily allows the movement of electric charge. The SI unit of electrical resistivity is the ohm metre...

 of the earth, in Ω
Ohm
The ohm is the SI unit of electrical resistance, named after German physicist Georg Simon Ohm.- Definition :The ohm is defined as a resistance between two points of a conductor when a constant potential difference of 1 volt, applied to these points, produces in the conductor a current of 1 ampere,...

·m. is the earth fault current, in ampere
Ampere
The ampere , often shortened to amp, is the SI unit of electric current and is one of the seven SI base units. It is named after André-Marie Ampère , French mathematician and physicist, considered the father of electrodynamics...

s.
This case is a simplified system; practical earthing systems are more complex than a single rod, and the soil will have varying resistivity. It can, however, reliably be said that the resistance of a ground grid is inversely proportional to the area it covers; this rule can be used to quickly assess the degree of difficulty for a particular site. Programs running on desktop personal computers can model ground resistance effects and produce detailed calculations of ground potential rise, using various techniques including the finite element method
Finite element method
The finite element method is a numerical technique for finding approximate solutions of partial differential equations as well as integral equations...

.

Standards and regulations

The US Occupational Safety and Health Administration (OSHA) has designated EPR as a "known hazard" and has issued regulations governing the elimination of this hazard in the work place.

IEEE Std. 80-2000 is a standard that addresses the calculation and mitigation of Step & Touch Potentials to acceptable levels.

External links

  • http://www.acif.org.au/__data/page/15836/S009_2006r.pdf AS/ACIF S009:2006 Installation Requirements for Customer Cabling (Wiring Rules).
  • http://esgroundingsolutions.com/ Information about Ground Potential Rise Studies
  • http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9868 OSHA 29 CFR 1910.269
  • http://www.davas.co.nz
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK