Foundry
Encyclopedia
A foundry is a factory
that produces metal
castings. Metals are cast into shapes by melting them into a liquid, pouring the metal in a mold, and removing the mold material or casting after the metal has solidified as it cools. The most common metals processed are aluminum and cast iron
. However, other metals, such as bronze
, steel
, magnesium
, copper
, tin
, and zinc
, are also used to produce castings in foundries.
. Virgin material, external scrap, internal scrap, and alloying elements are used to charge the furnace. Virgin material refers to commercially pure forms of the primary metal used to form a particular alloy. Alloying elements are either pure forms of an alloying element, like electrolytic nickel, or alloys of limited composition, such as ferroalloys or master alloys. External scrap is material from other forming processes such as punching, forging, or machining. Internal scrap consists of the gates, risers, or defective castings.
The process includes melting the charge, refining the melt, adjusting the melt chemistry and tapping into a transport vessel. Refining is done to remove deleterious gases and elements from the molten metal to avoid casting defects. Material is added during the melting process to bring the final chemistry within a specific range specified by industry and/or internal standards. During the tap, final chemistry adjustments are made.
s (EAF), induction furnace
s, cupolas
, reverberatory
, and crucible furnaces. Furnace choice is dependent on the alloy system and quantities produced. For ferrous materials, EAFs, cupolas, and induction furnaces are commonly used. Reverberatory and crucible furnaces are common for producing aluminum castings.
Furnace design is a complex process, and the design can be optimized based on multiple factors. Furnaces in foundries can be any size, ranging from mere ounces to hundreds of tons, and they are designed according to the type of metals that are to be melted. Also, furnaces must be designed around the fuel being used to produce the desired temperature. For low temperature melting point alloys, such as zinc or tin, melting furnaces may reach around 327° Celsius. Electricity, propane, or natural gas are usually used for these temperatures. For high melting point alloys such as steel or nickel based alloys, the furnace must be designed for temperatures over 1600° Celsius. The fuel used to reach these high temperatures can be electricity or coke
.
The majority of foundries specialize in a particular metal and have furnaces dedicated to these metals. For example, an iron foundry (for cast iron) may use a cupola
, induction furnace, or EAF, while a steel foundry will use an EAF or induction furnace. Bronze
or brass
foundries use crucible furnaces or induction furnaces. Most aluminum foundries use either an electric resistance or gas heated crucible
furnaces or reverberatory furnaces.
An efficient way of removing hydrogen from the melt is to bubble argon or nitrogen. To do that, several different types of equipment are used by foundries. When the bubbles go up in the melt, they catch the dissolved hydrogen and bring it to the top surface.
There are various equipment which measure the amount of hydrogen present in it. Alternatively, the density of the aluminum sample is calculated to check amount of hydrogen dissolved in it.
inserted to complete the final part shape. Where the cope and drag separates is called the parting line
. When making a pattern it is best to taper the edges so that the pattern can be removed without breaking the mold. This is called draft. The opposite of draft is an undercut where there is part of the pattern under the sand making it impossible to remove the pattern without damaging the mould. The molds are constructed by several different processes dependent upon the type of foundry, metal to be poured, quantity of parts to be produced, size of the casting and complexity of the casting. These mold processes include:
. Pouring can be accomplished with gravity, or it may be assisted with a vacuum or pressurized gas. Many modern foundries use robots or automatic pouring machines for pouring molten metal. Traditionally, molds were poured by hand using ladles
.
s from the casting. Runners, gates, and risers may be removed using cutting torches, bandsaws or ceramic cutoff blades. For some metal types, and with some gating system designs, the sprue, runners and gates can be removed by breaking them away from the casting with a sledge hammer or specially designed knockout machinery. Risers must usually be removed using a cutting method (see above) but some newer methods of riser removal use knockoff machinery with special designs incorporated into the riser neck geometry that allow the riser to break off at the right place.
The gating system required to produce castings in a mold yields leftover metal, including heads, risers and sprue, sometimes collectively called sprue, that can exceed 50% of the metal required to pour a full mold. Since this metal must be remelted as salvage, the yield of a particular gating configuration becomes an important economic consideration when designing various gating schemes, to minimize the cost of excess sprue, and thus melting costs.
. Shot peening
may be used to further work-harden and finish the surface.
the component in order to achieve the desired dimensional accuracies, physical shape and surface finish.
Removing the remaining gate material, called a gate stub, is usually done using a grinder
or sanding. These processes are used because their material removal rates are slow enough to control the amount of material. These steps are done prior to any final machining.
After grinding, any surfaces that require tight dimensional control are machined. Many castings are machined in CNC milling
centers. The reason for this is that these processes have better dimensional capability and repeatability than many casting processes. However, it is not uncommon today for many components to be used without machining.
A few foundries provide other services before shipping components to their customers. Painting components to prevent corrosion and improve visual appeal is common. Some foundries will assemble their castings into complete machines or sub-assemblies. Other foundries weld
multiple castings or wrought metals together to form a finished product.
More and more the process of finishing a casting is being achieved using robotic machines which eliminate the need for a human to physically grind or break parting lines, gating material or feeders. The introduction of these machines has reduced injury to workers, costs of consumables whilst also reducing the time necessary to finish a casting. It also eliminates the problem of human error so as to increase repeatability in the quality of grinding. With a change of tooling these machines can finish a wide variety of materials including iron, bronze and aluminium.
Factory
A factory or manufacturing plant is an industrial building where laborers manufacture goods or supervise machines processing one product into another. Most modern factories have large warehouses or warehouse-like facilities that contain heavy equipment used for assembly line production...
that produces metal
Metal
A metal , is an element, compound, or alloy that is a good conductor of both electricity and heat. Metals are usually malleable and shiny, that is they reflect most of incident light...
castings. Metals are cast into shapes by melting them into a liquid, pouring the metal in a mold, and removing the mold material or casting after the metal has solidified as it cools. The most common metals processed are aluminum and cast iron
Cast iron
Cast iron is derived from pig iron, and while it usually refers to gray iron, it also identifies a large group of ferrous alloys which solidify with a eutectic. The color of a fractured surface can be used to identify an alloy. White cast iron is named after its white surface when fractured, due...
. However, other metals, such as bronze
Bronze
Bronze is a metal alloy consisting primarily of copper, usually with tin as the main additive. It is hard and brittle, and it was particularly significant in antiquity, so much so that the Bronze Age was named after the metal...
, steel
Steel
Steel is an alloy that consists mostly of iron and has a carbon content between 0.2% and 2.1% by weight, depending on the grade. Carbon is the most common alloying material for iron, but various other alloying elements are used, such as manganese, chromium, vanadium, and tungsten...
, magnesium
Magnesium
Magnesium is a chemical element with the symbol Mg, atomic number 12, and common oxidation number +2. It is an alkaline earth metal and the eighth most abundant element in the Earth's crust and ninth in the known universe as a whole...
, copper
Copper
Copper is a chemical element with the symbol Cu and atomic number 29. It is a ductile metal with very high thermal and electrical conductivity. Pure copper is soft and malleable; an exposed surface has a reddish-orange tarnish...
, tin
Tin
Tin is a chemical element with the symbol Sn and atomic number 50. It is a main group metal in group 14 of the periodic table. Tin shows chemical similarity to both neighboring group 14 elements, germanium and lead and has two possible oxidation states, +2 and the slightly more stable +4...
, and zinc
Zinc
Zinc , or spelter , is a metallic chemical element; it has the symbol Zn and atomic number 30. It is the first element in group 12 of the periodic table. Zinc is, in some respects, chemically similar to magnesium, because its ion is of similar size and its only common oxidation state is +2...
, are also used to produce castings in foundries.
Melting
Melting is performed in a furnaceFurnace
A furnace is a device used for heating. The name derives from Latin fornax, oven.In American English and Canadian English, the term furnace on its own is generally used to describe household heating systems based on a central furnace , and sometimes as a synonym for kiln, a device used in the...
. Virgin material, external scrap, internal scrap, and alloying elements are used to charge the furnace. Virgin material refers to commercially pure forms of the primary metal used to form a particular alloy. Alloying elements are either pure forms of an alloying element, like electrolytic nickel, or alloys of limited composition, such as ferroalloys or master alloys. External scrap is material from other forming processes such as punching, forging, or machining. Internal scrap consists of the gates, risers, or defective castings.
The process includes melting the charge, refining the melt, adjusting the melt chemistry and tapping into a transport vessel. Refining is done to remove deleterious gases and elements from the molten metal to avoid casting defects. Material is added during the melting process to bring the final chemistry within a specific range specified by industry and/or internal standards. During the tap, final chemistry adjustments are made.
Furnace
Several specialised furnaces are used to melt the metal. Furnaces are refractory lined vessels that contain the material to be melted and provide the energy to melt it. Modern furnace types include electric arc furnaceElectric arc furnace
An electric arc furnace is a furnace that heats charged material by means of an electric arc.Arc furnaces range in size from small units of approximately one ton capacity up to about 400 ton units used for secondary steelmaking...
s (EAF), induction furnace
Induction furnace
An induction furnace is an electrical furnace in which the heat is applied by induction heating of metal. The advantage of the induction furnace is a clean, energy-efficient and well-controllable melting process compared to most other means of metal melting...
s, cupolas
Cupola furnace
A Cupola or Cupola furnace is a melting device used in foundries that can be used to melt cast iron, ni-resist iron and some bronzes. The cupola can be made almost any practical size. The size of a cupola is expressed in diameters and can range from . The overall shape is cylindrical and the...
, reverberatory
Reverberatory furnace
A reverberatory furnace is a metallurgical or process furnace that isolates the material being processed from contact with the fuel, but not from contact with combustion gases...
, and crucible furnaces. Furnace choice is dependent on the alloy system and quantities produced. For ferrous materials, EAFs, cupolas, and induction furnaces are commonly used. Reverberatory and crucible furnaces are common for producing aluminum castings.
Furnace design is a complex process, and the design can be optimized based on multiple factors. Furnaces in foundries can be any size, ranging from mere ounces to hundreds of tons, and they are designed according to the type of metals that are to be melted. Also, furnaces must be designed around the fuel being used to produce the desired temperature. For low temperature melting point alloys, such as zinc or tin, melting furnaces may reach around 327° Celsius. Electricity, propane, or natural gas are usually used for these temperatures. For high melting point alloys such as steel or nickel based alloys, the furnace must be designed for temperatures over 1600° Celsius. The fuel used to reach these high temperatures can be electricity or coke
Coke (fuel)
Coke is the solid carbonaceous material derived from destructive distillation of low-ash, low-sulfur bituminous coal. Cokes from coal are grey, hard, and porous. While coke can be formed naturally, the commonly used form is man-made.- History :...
.
The majority of foundries specialize in a particular metal and have furnaces dedicated to these metals. For example, an iron foundry (for cast iron) may use a cupola
Cupola furnace
A Cupola or Cupola furnace is a melting device used in foundries that can be used to melt cast iron, ni-resist iron and some bronzes. The cupola can be made almost any practical size. The size of a cupola is expressed in diameters and can range from . The overall shape is cylindrical and the...
, induction furnace, or EAF, while a steel foundry will use an EAF or induction furnace. Bronze
Bronze
Bronze is a metal alloy consisting primarily of copper, usually with tin as the main additive. It is hard and brittle, and it was particularly significant in antiquity, so much so that the Bronze Age was named after the metal...
or brass
Brass
Brass is an alloy of copper and zinc; the proportions of zinc and copper can be varied to create a range of brasses with varying properties.In comparison, bronze is principally an alloy of copper and tin...
foundries use crucible furnaces or induction furnaces. Most aluminum foundries use either an electric resistance or gas heated crucible
Crucible
A crucible is a container used for metal, glass, and pigment production as well as a number of modern laboratory processes, which can withstand temperatures high enough to melt or otherwise alter its contents...
furnaces or reverberatory furnaces.
Degassing
In the case of aluminium alloys, a degassing step is usually necessary to reduce the amount of hydrogen in the liquid metal. If the hydrogen concentration in the melt is too high, the resulting casting will contain gas porosity that will deteriorate its mechanical properties.An efficient way of removing hydrogen from the melt is to bubble argon or nitrogen. To do that, several different types of equipment are used by foundries. When the bubbles go up in the melt, they catch the dissolved hydrogen and bring it to the top surface.
There are various equipment which measure the amount of hydrogen present in it. Alternatively, the density of the aluminum sample is calculated to check amount of hydrogen dissolved in it.
Mould making
In the casting process a pattern is made in the shape of the desired part. This pattern is made out of wax, wood, plastic or metal. Simple designs can be made in a single piece or solid pattern. More complex designs are made in two parts, called split patterns. A split pattern has a top or upper section, called a cope, and a bottom or lower section called a drag. Both solid and split patterns can have coresCore (manufacturing)
A core is a device used in casting and molding processes to produce internal cavities and reentrant angles. The core is normally a disposable item that is destroyed to get it out of the piece. They are most commonly used in sand casting, but are also used in injection molding.An intriguing example...
inserted to complete the final part shape. Where the cope and drag separates is called the parting line
Parting line
A parting line in moldmaking is the place where two or more parts of the mold meet. At times, either because the mold halves do not meet with enough precision or because injection pressure is high, material will creep into the space between the molds. This material is generally called molding...
. When making a pattern it is best to taper the edges so that the pattern can be removed without breaking the mold. This is called draft. The opposite of draft is an undercut where there is part of the pattern under the sand making it impossible to remove the pattern without damaging the mould. The molds are constructed by several different processes dependent upon the type of foundry, metal to be poured, quantity of parts to be produced, size of the casting and complexity of the casting. These mold processes include:
- Sand castingSand castingSand casting, also known as sand molded casting, is a metal casting process characterized by using sand as the mold material.It is relatively cheap and sufficiently refractory even for steel foundry use. A suitable bonding agent is mixed or occurs with the sand...
— Green or resin bonded sand mold. - Lost-foam castingLost-foam castingLost-foam casting is a type of evaporative-pattern casting process that is similar to investment casting except foam is used for the pattern instead of wax...
— Polystyrene pattern with a mixture of ceramic and sand mold. - Investment castingInvestment castingInvestment casting is an industrial process based on and also called lost-wax casting, one of the oldest known metal-forming techniques. From 5,000 years ago, when beeswax formed the pattern, to today’s high-technology waxes, refractory materials and specialist alloys, the castings allow the...
— Wax or similar sacrificial pattern with a ceramic mold. - Ceramic mold casting — Plaster mold.
- V-process casting — Vacuum is used in conjunction with thermoformed plastic to form sand molds. No moisture, clay or resin is needed for sand to retain shape.
- Die castingDie castingDie casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process...
— Metal mold. - Billet (ingot) castingBillet (manufacturing)Semi-finished casting products are intermediate castings produced in a foundry that need further processing before being a finished good. There are four types: ingots, billets, blooms, and slabs.-Ingot:...
— Simple mold for producing ingots of metal normally for use in other foundries.
Pouring
In a foundry, molten metal is poured into moldsMolding (process)
Molding or moulding is the process of manufacturing by shaping pliable raw material using a rigid frame or model called a pattern....
. Pouring can be accomplished with gravity, or it may be assisted with a vacuum or pressurized gas. Many modern foundries use robots or automatic pouring machines for pouring molten metal. Traditionally, molds were poured by hand using ladles
Ladle (metallurgy)
In a foundry, a ladle is a vessel used to transport and pour out molten metals. Ladles range in size from small hand carried vessels that resemble a kitchen ladle and hold or to large steelmill ladles that hold up to...
.
Shakeout
The solidified metal component is then removed from its mold. Where the mold is sand based, this can be done by shaking or tumbling. This frees the casting from the sand, which is still attached to the metal runners and gates - which are the channels through which the molten metal traveled to reach the component itself.Degating
Degating is the removal of the heads, runners, gates, and riserRiser
Riser may refer to:* Riser , a reservoir in a manufacturing mold* Stair riser, the vertical elements in a set of stairs* Drilling riser, a device used on a ship or offshore drilling rig...
s from the casting. Runners, gates, and risers may be removed using cutting torches, bandsaws or ceramic cutoff blades. For some metal types, and with some gating system designs, the sprue, runners and gates can be removed by breaking them away from the casting with a sledge hammer or specially designed knockout machinery. Risers must usually be removed using a cutting method (see above) but some newer methods of riser removal use knockoff machinery with special designs incorporated into the riser neck geometry that allow the riser to break off at the right place.
The gating system required to produce castings in a mold yields leftover metal, including heads, risers and sprue, sometimes collectively called sprue, that can exceed 50% of the metal required to pour a full mold. Since this metal must be remelted as salvage, the yield of a particular gating configuration becomes an important economic consideration when designing various gating schemes, to minimize the cost of excess sprue, and thus melting costs.
Surface cleaning
After degating, sand or other molding media may adhere to the casting. To remove this the surface is cleaned using a blasting process. This means a granular media will be propelled against the surface of the casting to mechanically knock away the adhering sand. The media may be blown with compressed air, or may be hurled using a shot wheel. The media strikes the casting surface at high velocity to dislodge the molding media (for example, sand, slag) from the casting surface. Numerous materials may be used as media, including steel, iron, other metal alloys, aluminum oxides, glass beads, walnut shells, baking powder among others. The blasting media is selected to develop the color and reflectance of the cast surface. Terms used to describe this process include cleaning, bead blasting, and sand blastingAbrasive blasting
Abrasive blasting is the operation of forcibly propelling a stream of abrasive material against a surface under high pressure to smooth a rough surface, roughen a smooth surface, shape a surface, or remove surface contaminants. A pressurized fluid, typically air, or a centrifugal wheel is used to...
. Shot peening
Shot peening
Shot peening is a cold working process used to produce a compressive residual stress layer and modify mechanical properties of metals. It entails impacting a surface with shot with force sufficient to create plastic deformation...
may be used to further work-harden and finish the surface.
Finishing
The final step in the process usually involves grinding, sanding, or machiningMachining
Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools, such as saws, lathes, milling machines, and drill presses, are used with a sharp cutting tool to physical remove material to achieve a desired...
the component in order to achieve the desired dimensional accuracies, physical shape and surface finish.
Removing the remaining gate material, called a gate stub, is usually done using a grinder
Grinding machine
A grinding machine, often shortened to grinder, is a machine tool used for grinding, which is a type of machining using an abrasive wheel as the cutting tool...
or sanding. These processes are used because their material removal rates are slow enough to control the amount of material. These steps are done prior to any final machining.
After grinding, any surfaces that require tight dimensional control are machined. Many castings are machined in CNC milling
Milling machine
A milling machine is a machine tool used to machine solid materials. Milling machines are often classed in two basic forms, horizontal and vertical, which refers to the orientation of the main spindle. Both types range in size from small, bench-mounted devices to room-sized machines...
centers. The reason for this is that these processes have better dimensional capability and repeatability than many casting processes. However, it is not uncommon today for many components to be used without machining.
A few foundries provide other services before shipping components to their customers. Painting components to prevent corrosion and improve visual appeal is common. Some foundries will assemble their castings into complete machines or sub-assemblies. Other foundries weld
Welding
Welding is a fabrication or sculptural process that joins materials, usually metals or thermoplastics, by causing coalescence. This is often done by melting the workpieces and adding a filler material to form a pool of molten material that cools to become a strong joint, with pressure sometimes...
multiple castings or wrought metals together to form a finished product.
More and more the process of finishing a casting is being achieved using robotic machines which eliminate the need for a human to physically grind or break parting lines, gating material or feeders. The introduction of these machines has reduced injury to workers, costs of consumables whilst also reducing the time necessary to finish a casting. It also eliminates the problem of human error so as to increase repeatability in the quality of grinding. With a change of tooling these machines can finish a wide variety of materials including iron, bronze and aluminium.
See also
- Coremaking
- Foundry sand testingFoundry sand testingFoundry sand testing is a foundry process used to determine if the foundry sand has the correct properties for a certain casting process. The sand is used to make moulds and cores via a pattern. In a sand casting foundry there are broadly two reasons for rejection of the casting — metal and...
- Gimson and CompanyGimson and CompanyGimson and Company were founded in 1840 by Josiah and Benjamin Gimson on Welford Road in Leicester. The company were listed as Engineers, Ironfounders, Boiler Makers & General Machinists. They later moved to Vulcan Works, Vulcan Street, Humberstone Road, Leicester.-Expansion:Between 1876 and 1878 a...
- May Brothers and CompanyMay Brothers and CompanyMay Brothers and Company was an engineering and manufacturing firm founded by Frederick and Alfred May in 1885. In 1986, during South Australia’s 150th Jubilee celebrations, Frederick May was named one of the 150 individuals to have made an outstanding contribution to the state’s development...
- SmeltingSmeltingSmelting is a form of extractive metallurgy; its main use is to produce a metal from its ore. This includes iron extraction from iron ore, and copper extraction and other base metals from their ores...
- Hydrogen gas porosityHydrogen gas porosityHydrogen gas porosity is an aluminium casting defect under the form of a porosity or void in an aluminium casting caused by a high level of hydrogen gas dissolved in the aluminium at liquid phase...
- Inclusions in aluminium castingsAluminium alloy inclusionsAn inclusion is a solid particle in liquid aluminium alloy. It is usually non-metallic and can be of different nature depending on its source.-Problems related to inclusions:...