Gain-switching
Encyclopedia
Gain-switching is a technique in optics
by which a laser
can be made to produce pulses of light
of extremely short duration, of the order of picoseconds (10-12 s
).
In a semiconductor laser, the optical pulses are generated by injecting a large number of carriers (electrons) into the active region of the device, bringing the carrier density within that region from below to above the lasing threshold
. When the carrier density exceeds that value, the ensuing stimulated emission
results in the generation of a large number of photons.
However, carriers are depleted as a result of stimulated emission
faster than they are injected. So the carrier density eventually falls back to below lasing threshold
which results in the termination of the optical output. If carrier injection has not ceased during this period, then the carrier density in the active region can increase once more and the process will repeat itself.
The figure on the right shows a typical pulse generated by gain-switching with a sinusoidal injection current at 250 MHz producing a pulse of approximately 50 ps. The carrier density is depleted during the pulse, and subsequently rises due to continued current injection, producing a smaller secondary pulse. If the injection current is rapidly switched off at the proper time, for example using a step recovery diode
circuit, a single 50 ps light pulse can be generated.
For solid-state and dye laser
s, gain switching (or synchronous pumping) usually involves the laser gain medium being pumped
with another pulsed laser. Since the pump pulses are of short duration, optical gain is only present in the laser for a short time, which results in a pulsed output. Q-switching
is more commonly used for producing pulsed output from these types of laser, as pulses with much higher peak power can be achieved.
The term gain-switching derives from the fact that the optical gain is negative when carrier density or pump intensity in the active region of the device is below threshold, and switches to a positive value when carrier density or the pump intensity exceeds the lasing threshold.
Optics
Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light...
by which a laser
Laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of photons. The term "laser" originated as an acronym for Light Amplification by Stimulated Emission of Radiation...
can be made to produce pulses of light
Light
Light or visible light is electromagnetic radiation that is visible to the human eye, and is responsible for the sense of sight. Visible light has wavelength in a range from about 380 nanometres to about 740 nm, with a frequency range of about 405 THz to 790 THz...
of extremely short duration, of the order of picoseconds (10-12 s
1 E-12 s
A picosecond is 10−12 of a second. That is one trillionth, or one millionth of one millionth of a second, or 0.000 000 000 001 seconds. A picosecond is to one second as one second is to 31,700 years....
).
In a semiconductor laser, the optical pulses are generated by injecting a large number of carriers (electrons) into the active region of the device, bringing the carrier density within that region from below to above the lasing threshold
Lasing threshold
The lasing threshold is the lowest excitation level at which a laser's output is dominated by stimulated emission rather than by spontaneous emission. Below the threshold, the laser's output power rises slowly with increasing excitation. Above threshold, the slope of power vs. excitation is orders...
. When the carrier density exceeds that value, the ensuing stimulated emission
Stimulated emission
In optics, stimulated emission is the process by which an atomic electron interacting with an electromagnetic wave of a certain frequency may drop to a lower energy level, transferring its energy to that field. A photon created in this manner has the same phase, frequency, polarization, and...
results in the generation of a large number of photons.
However, carriers are depleted as a result of stimulated emission
Stimulated emission
In optics, stimulated emission is the process by which an atomic electron interacting with an electromagnetic wave of a certain frequency may drop to a lower energy level, transferring its energy to that field. A photon created in this manner has the same phase, frequency, polarization, and...
faster than they are injected. So the carrier density eventually falls back to below lasing threshold
Lasing threshold
The lasing threshold is the lowest excitation level at which a laser's output is dominated by stimulated emission rather than by spontaneous emission. Below the threshold, the laser's output power rises slowly with increasing excitation. Above threshold, the slope of power vs. excitation is orders...
which results in the termination of the optical output. If carrier injection has not ceased during this period, then the carrier density in the active region can increase once more and the process will repeat itself.
The figure on the right shows a typical pulse generated by gain-switching with a sinusoidal injection current at 250 MHz producing a pulse of approximately 50 ps. The carrier density is depleted during the pulse, and subsequently rises due to continued current injection, producing a smaller secondary pulse. If the injection current is rapidly switched off at the proper time, for example using a step recovery diode
Step recovery diode
In electronics, a step recovery diode is a semiconductor junction diode having the ability to generate extremely short pulses. It is also called snap-off diode or charge-storage diode or memory varactor, and has a variety of uses in microwave electronics as pulse generator or parametric...
circuit, a single 50 ps light pulse can be generated.
For solid-state and dye laser
Dye laser
A dye laser is a laser which uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths. The wide bandwidth makes them particularly suitable for tunable lasers and...
s, gain switching (or synchronous pumping) usually involves the laser gain medium being pumped
Laser pumping
Laser pumping is the act of energy transfer from an external source into the gain medium of a laser. The energy is absorbed in the medium, producing excited states in its atoms. When the number of particles in one excited state exceeds the number of particles in the ground state or a less-excited...
with another pulsed laser. Since the pump pulses are of short duration, optical gain is only present in the laser for a short time, which results in a pulsed output. Q-switching
Q-switching
Q-switching, sometimes known as giant pulse formation, is a technique by which a laser can be made to produce a pulsed output beam. The technique allows the production of light pulses with extremely high peak power, much higher than would be produced by the same laser if it were operating in a...
is more commonly used for producing pulsed output from these types of laser, as pulses with much higher peak power can be achieved.
The term gain-switching derives from the fact that the optical gain is negative when carrier density or pump intensity in the active region of the device is below threshold, and switches to a positive value when carrier density or the pump intensity exceeds the lasing threshold.