Geothermal Systems
Encyclopedia
A geothermal heat pump, ground source heat pump (GSHP), or ground heat pump is a central heating
Central heating
A central heating system provides warmth to the whole interior of a building from one point to multiple rooms. When combined with other systems in order to control the building climate, the whole system may be a HVAC system.Central heating differs from local heating in that the heat generation...

 and/or cooling system that pumps heat to or from the ground.

It uses the earth as a heat source (in the winter) or a heat sink
Heat sink
A heat sink is a term for a component or assembly that transfers heat generated within a solid material to a fluid medium, such as air or a liquid. Examples of heat sinks are the heat exchangers used in refrigeration and air conditioning systems and the radiator in a car...

 (in the summer). This design takes advantage of the moderate temperatures in the ground to boost efficiency and reduce the operational costs of heating and cooling systems, and may be combined with solar heating to form a geosolar system with even greater efficiency. Ground source heat pumps are also known as "geothermal heat pumps" although, strictly, the heat does not come from the centre of the Earth, but from the Sun. They are also known by other names, including geoexchange, earth-coupled, earth energy systems. The engineering and scientific communities prefer the terms "geoexchange" or "ground source heat pumps" to avoid confusion with traditional geothermal power
Geothermal power
Geothermal energy is thermal energy generated and stored in the Earth. Thermal energy is the energy that determines the temperature of matter. Earth's geothermal energy originates from the original formation of the planet and from radioactive decay of minerals...

, which uses a high temperature heat source to generate electricity. Ground source heat pumps harvest heat absorbed at the Earth's surface from solar energy. The temperature in the ground below 6 metres (19.7 ft) is equal to the mean annual air temperature at that latitude at the surface.

Depending on latitude, the temperature beneath the upper 6 metres (19.7 ft) of Earth's surface maintains a nearly constant temperature between 10 and 16 °C (50 and 60 °F), if the temperature is undisturbed by the presence of a heat pump. Like a refrigerator or air conditioner, these systems use a heat pump
Heat pump
A heat pump is a machine or device that effectively "moves" thermal energy from one location called the "source," which is at a lower temperature, to another location called the "sink" or "heat sink", which is at a higher temperature. An air conditioner is a particular type of heat pump, but the...

 to force the transfer of heat from the ground. Heat pumps can transfer heat from a cool space to a warm space, against the natural direction of flow, or they can enhance the natural flow of heat from a warm area to a cool one. The core of the heat pump is a loop of refrigerant pumped through a vapor-compression refrigeration
Vapor-compression refrigeration
Vapor-compression refrigeration is one of the many refrigeration cycles available for use. It has been and is the most widely used method for air-conditioning of large public buildings, offices, private residences, hotels, hospitals, theaters, restaurants and automobiles...

 cycle that moves heat. Heat pumps are typically more efficient at heating than pure electric heaters, even when extracting heat from cold winter air, although efficiencies begin dropping significantly as outside air temperatures drop below 5 °C (41 °F). But unlike an air-source heat pump, which transfers heat to or from the outside air, a ground source heat pump exchanges heat with the ground. This is much more energy-efficient because underground temperatures are more stable than air temperatures through the year. Seasonal variations drop off with depth and disappear below seven meters due to thermal inertia. Like a cave
Cave
A cave or cavern is a natural underground space large enough for a human to enter. The term applies to natural cavities some part of which is in total darkness. The word cave also includes smaller spaces like rock shelters, sea caves, and grottos.Speleology is the science of exploration and study...

, the shallow ground temperature is warmer than the air above during the winter and cooler than the air in the summer. A ground source heat pump extracts ground heat in the winter (for heating) and transfers heat back into the ground in the summer (for cooling). Some systems are designed to operate in one mode only, heating or cooling, depending on climate.

The geothermal pump systems reach fairly high Coefficient of performance (CoP), 3-6, on the coldest of winter nights, compared to 1.75-2.5 for air-source heat pumps on cool days. Ground source heat pumps (GSHPs) are among the most energy efficient technologies for providing HVAC
HVAC
HVAC refers to technology of indoor or automotive environmental comfort. HVAC system design is a major subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer...

 and water heating
Water heating
Water heating is a thermodynamic process using an energy source to heat water above its initial temperature. Typical domestic uses of hot water are for cooking, cleaning, bathing, and space heating...

.
Actual CoP of a geothermal system which includes the power required to circulate the fluid through the underground tubes can be lower than 2.5.
The setup costs are higher than for conventional systems, but the difference is usually returned in energy savings in 3 to 10 years. System life is estimated at 25 years for inside components and 50+ years for the ground loop. As of 2004, there are over a million units installed worldwide providing 12 GW of thermal capacity, with an annual growth rate of 10%.

Differing terms and definitions

Although it is clear what heat pumps do, there is confusion with regard to the terminology and use of the term "geothermal" . "Geothermal" is derived from Greek and means "heat from the Earth" and is by geologists understood to describe hot rocks, volcanic activity or heat derived from deep in the earth. Confusion arises when the term "geothermal" is also used to apply to temperatures within the first 100 metres of the surface which closely match the mean annual air temperature at the surface. Technically, most heat deeper down than say 30 meters comes from the centre of the earth, so ground source heat is usually a mix of geothermal heat as understood by geologists, and heat infiltrating from above.

History

The heat pump was described by Lord Kelvin in 1853 and developed by Peter Ritter von Rittinger
Peter Ritter von Rittinger
Peter von Rittinger was an Austrian Montanist and pioneer of mineral processing.- Life :The son of poor parents, Peter von Rittinger attended high school in Leipnik and, in difficult circumstances, studied at the Faculty of Philosophy and the Faculty of Law of University of Olomouc...

 in 1855. After experimenting with a freezer, Robert C. Webber built the first direct exchange ground-source heat pump in the late 1940s. The first successful commercial project was installed in the Commonwealth Building (Portland, Oregon)
Commonwealth Building (Portland, Oregon)
The Commonwealth Building is a 14-story commercial office tower in Portland, Oregon, United States, located at 421 SW 6th Avenue between Washington and Stark Streets. Designed by architect Pietro Belluschi, it was built between 1944 and 1948 and was originally known as the Equitable Building...

 in 1946, and has been designated a National Historic Mechanical Engineering Landmark by ASME. The technology became popular in Sweden in the 1970s, and has been growing slowly in worldwide acceptance since then. Open loop systems dominated the market until the development of polybutylene
Polybutylene
Polybutylene is a polyolefin or saturated polymer with the chemical formula n. It should not be confused with polybutene, a low molecular weight oligomer with a different repeat unit....

 pipe in 1979 made closed loop systems economically viable. As of 2004, there are over a million units installed worldwide providing 12 GW of thermal capacity. Each year, about 80,000 units are installed in the US (geothermal energy is used in all 50 US states today, with great potential for near-term market growth and savings) and 27,000 in Sweden.

Ground heat exchanger

Heat pumps provide wintertime heating by extracting heat from a source and transferring it to the building. In theory, heat can be extracted from any source, no matter how cold, but a warmer source allows higher efficiency. A ground source heat pump uses the top layer of the earth crust (usually three to 500 feet deep) as a source of heat, thus taking advantage of its seasonally moderate temperatures.

In the summer, the process can be reversed so the heat pump extracts heat from the building and transfers it to the ground. Transferring heat to a cooler space takes less energy, so the cooling efficiency of the heat pump gain benefits from the lower ground temperatures.

Ground source heat pumps must have a heat exchanger
Heat exchanger
A heat exchanger is a piece of equipment built for efficient heat transfer from one medium to another. The media may be separated by a solid wall, so that they never mix, or they may be in direct contact...

 in contact with the ground or groundwater to extract or dissipate heat. This component accounts for a fifth up to half of the total system cost, and it often is the most cumbersome part to repair or replace. Currently they are often designed to have minimal installation cost, while just not freezing up the ground. Even marginally under sizing this component leads to reduced energy efficiency and increased electricity bills. In the longer term this can lead to freezing up of the ground, resulting in spiralling electricity costs and the heat pump automatically stopping to prevent frost damage to the condenser. Over sizing this component often is highly beneficial in the long term: the energy efficiency of the system improves with roughly 4 percent for every degree Celcius that is won through over sizing. Spending extra money on over sizing the ground source is usually more economical than spending the same extra money on a better heat pump.

Shallow (3-8 feet) horizontal heat exchangers experience seasonal temperature cycles due to solar gains and transmission losses to ambient air at ground level. These temperature cycles lag behind the seasons because of thermal inertia, so the heat exchanger will harvest heat deposited by the sun several months earlier, while being weighed down in late winter and spring, due to accumulated winter cold. Deep vertical systems (100-500 feet) rely on migration of heat from surrounding geology, unless they are recharged annually by exhaust heat from air conditioning or roof top systems.

Several major design options are available for these, which are classified by fluid and layout. Direct exchange systems circulate refrigerant underground, closed loop systems use a mixture of anti-freeze and water, and open loop systems use natural groundwater.

Direct exchange

The Direct exchange geothermal heat pump
Direct exchange geothermal heat pump
A direct exchange geothermal heat pump system is a geothermal heat pump system in which the refrigerant circulates through copper tubing placed in the ground. The refrigerant exchanges heat directly with the soil through the walls of the copper tubing. This eliminates the plastic water pipe and...

 is the oldest type of geothermal heat pump technology. It is also the simplest and easiest to understand. The ground-coupling is achieved through a single loop circulating refrigerant in direct thermal contact with the ground (as opposed to a combination of a refrigerant loop and a water loop). The refrigerant
Refrigerant
A refrigerant is a substance used in a heat cycle usually including, for enhanced efficiency, a reversible phase change from a liquid to a gas. Traditionally, fluorocarbons, especially chlorofluorocarbons, were used as refrigerants, but they are being phased out because of their ozone depletion...

 leaves the heat pump appliance cabinet, circulates through a loop of copper tube buried underground, and exchanges heat with the ground before returning to the pump. The name "direct exchange" refers to heat transfer between the refrigerant and the ground without the use of an intermediate fluid. There is no direct interaction between the fluid and the earth; only heat transfer
Heat transfer
Heat transfer is a discipline of thermal engineering that concerns the exchange of thermal energy from one physical system to another. Heat transfer is classified into various mechanisms, such as heat conduction, convection, thermal radiation, and phase-change transfer...

 through the pipe wall. Direct exchange heat pumps are not to be confused with "water-source heat pumps" or "water loop heat pumps" since there is no water in the ground loop. ASHRAE defines the term ground-coupled heat pump to encompass closed loop and direct exchange systems, while excluding open loops.

Direct exchange systems were significantly more efficient (the gap is now closed) and have potentially lower installation costs than closed loop water systems. Copper's high thermal conductivity contributes to the higher efficiency of the system, but heat flow is predominantly limited by the thermal conductivity of the ground, not the pipe. The main reasons for the higher efficiency are the elimination of the water pump (which uses electricity), the elimination of the water heat exchanger (which is a source of heat losses), and most importantly, the latent heat phase change of the refrigerant in the ground itself.

While they require much more refrigerant and their tubing is more expensive per foot, a direct exchange loop is shorter than a closed water loop for a given capacity. A direct exchange system requires only 15 to 30% of the length of tubing and half the diameter of drilled holes, and the drilling or excavation costs are therefore lower. Refrigerant loops are less tolerant of leaks than water loops because gas can leak out through smaller imperfections. This dictates the use of brazed copper tubing, even though the pressures are similar to water loops. The copper loop must be protected from corrosion in acidic soil through the use of a sacrificial anode or cathodic protection
Cathodic protection
Cathodic protection is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell. The simplest method to apply CP is by connecting the metal to be protected with another more easily corroded "sacrificial metal" to act as the anode of the...

. These systems are no longer allowed in some European countries because they have a risk that refrigerant mixed with compressor lubricants leaks into the ground water, which is often also a drink water source.

Closed loop

Most installed systems have two loops on the ground side: the primary refrigerant loop is contained in the appliance cabinet where it exchanges heat with a secondary water loop that is buried underground. The secondary loop is typically made of High-density polyethylene pipe and contains a mixture of water and anti-freeze (propylene glycol
Propylene glycol
Propylene glycol, also called 1,2-propanediol or propane-1,2-diol, is an organic compound with formula C3H8O2 or HO-CH2-CHOH-CH3...

, denatured alcohol or methanol
Methanol
Methanol, also known as methyl alcohol, wood alcohol, wood naphtha or wood spirits, is a chemical with the formula CH3OH . It is the simplest alcohol, and is a light, volatile, colorless, flammable liquid with a distinctive odor very similar to, but slightly sweeter than, ethanol...

). Monopropylene glycol has the least damaging potential when it might leak into the ground, and is therefore the only allowed anti-freeze in ground sources in an increasing number of European countries. After leaving the internal heat exchanger, the water flows through the secondary loop outside the building to exchange heat with the ground before returning. The secondary loop is placed below the frost line
Frost line
The frost line—also known as frost depth or freezing depth—is most commonly the depth to which the groundwater in soil is expected to freeze. The frost depth depends on the climatic conditions of an area, the heat transfer properties of the soil and adjacent materials, and on nearby heat sources...

 where the temperature is more stable, or preferably submerged in a body of water if available. Systems in wet ground or in water are generally more efficient than drier ground loops since it is less work to move heat in and out of water than solids in sand or soil. If the ground is naturally dry, soaker hoses may be buried with the ground loop to keep it wet.

Closed loop systems need a heat exchanger between the refrigerant loop and the water loop, and pumps in both loops. Some manufacturers have a separate ground loop fluid pump pack, while some integrate the pumping and valving within the heat pump. Expansion tanks and pressure relief valves may be installed on the heated fluid side. Closed loop systems have lower efficiency than direct exchange systems, so they require longer and larger pipe to be placed in the ground, increasing excavation costs.

Closed loop tubing can be installed horizontally as a loop field in trenches or vertically as a series of long U-shapes in wells(see below). The size of the loop field depends on the soil type and moisture content, the average ground temperature and the heat loss and or gain characteristics of the building being conditioned. A rough approximation of the initial soil temperature is the average daily temperature for the region.

Vertical

A vertical closed loop field is composed of pipes that run vertically in the ground. A hole is bored in the ground, typically 75 to- deep. Pipe pairs in the hole are joined with a U-shaped cross connector at the bottom of the hole. The borehole
Borehole
A borehole is the generalized term for any narrow shaft bored in the ground, either vertically or horizontally. A borehole may be constructed for many different purposes, including the extraction of water or other liquid or gases , as part of a geotechnical investigation, environmental site...

 is commonly filled with a bentonite
Bentonite
Bentonite is an absorbent aluminium phyllosilicate, essentially impure clay consisting mostly of montmorillonite. There are different types of bentonite, each named after the respective dominant element, such as potassium , sodium , calcium , and aluminum . Experts debate a number of nomenclatorial...

 grout
Grout
Grout is a construction material used to embed rebars in masonry walls, connect sections of pre-cast concrete, fill voids, and seal joints . Grout is generally composed of a mixture of water, cement, sand, often color tint, and sometimes fine gravel...

 surrounding the pipe to provide a thermal connection to the surrounding soil or rock to improve the heat transfer
Heat transfer
Heat transfer is a discipline of thermal engineering that concerns the exchange of thermal energy from one physical system to another. Heat transfer is classified into various mechanisms, such as heat conduction, convection, thermal radiation, and phase-change transfer...

. Thermally enhanced grouts are available to improve this heat transfer. Grout also protects the ground water from contamination, and prevents artesian wells from flooding the property. Vertical loop fields are typically used when there is a limited area of land available. Bore holes are spaced at least 5–6 m apart and the depth depends on ground and building characteristics. For illustration, a detached house needing 10 kW (3 ton) of heating capacity might need three boreholes 80 to 110 m (262.5 to 360.9 ft) deep. (A ton of heat is 12,000 British thermal unit
British thermal unit
The British thermal unit is a traditional unit of energy equal to about 1055 joules. It is approximately the amount of energy needed to heat of water, which is exactly one tenth of a UK gallon or about 0.1198 US gallons, from 39°F to 40°F...

s per hour (BTU/h) or 3.5 kilowatts.) During the cooling season, the local temperature rise in the bore field is influenced most by the moisture travel in the soil. Reliable heat transfer models have been developed through sample bore holes as well as other tests.

Horizontal

A horizontal closed loop field is composed of pipes that run horizontally in the ground. A long horizontal trench
Trench
A trench is a type of excavation or depression in the ground. Trenches are generally defined by being deeper than they are wide , and by being narrow compared to their length ....

, deeper than the frost line
Frost line
The frost line—also known as frost depth or freezing depth—is most commonly the depth to which the groundwater in soil is expected to freeze. The frost depth depends on the climatic conditions of an area, the heat transfer properties of the soil and adjacent materials, and on nearby heat sources...

, is dug and U-shaped or slinky coils are placed horizontally inside the same trench. Excavation for shallow horizontal loop fields is about half the cost of vertical drilling, so this is the most common layout used wherever there is adequate land available. For illustration, a detached house needing 10 kW (3 ton) of heating capacity might need 3 loops 120 to 180 m (393.7 to 590.6 ft) long of NPS
Nominal Pipe Size
Nominal Pipe Size is a North American set of standard sizes for pipes used for high or low pressures and temperatures. Pipe size is specified with two non-dimensional numbers: a nominal pipe size for diameter based on inches, and a schedule for wall thickness...

 3/4 (DN 20) or NPS 1.25 (DN 32) polyethylene tubing at a depth of 1 to 2 m (3.3 to 6.6 ft).

The depth at which the loops are placed significantly influences the electricity use of the heat pump in two opposite ways: shallow loops tend to indirectly pick up quite some heat from the sun, which is helpful, especially when the ground has become cold after a long cold winter. On the other hand, shallow placed loops are also cooled down much more by cold weather, especially by long cold winters, when heating demand peaks. Often, the second effect is much bigger than the first one, leading to higher electricity bills for the more shallow ground loops.

A slinky (also called coiled) closed loop field is a type of horizontal closed loop where the pipes overlay each other (not a recommended method). The easiest way of picturing a slinky field is to imagine holding a slinky
Slinky
Slinky or "Lazy Spring" is a toy consisting of a helical spring that stretches and can bounce up and down. It can perform a number of tricks, including traveling down a flight of steps end-over-end as it stretches and re-forms itself with the aid of gravity and its own momentum.-History:The toy was...

 on the top and bottom with your hands and then move your hands in opposite directions. A slinky loop field is used if there is not adequate room for a true horizontal system, but it still allows for an easy installation. Rather than using straight pipe, slinky coils, use overlapped loops of piping laid out horizontally along the bottom of a wide trench. Depending on soil, climate and the heat pump's run fraction, slinky coil trenches can be anywhere from one third to two thirds shorter than traditional horizontal loop trenches. Slinky coil ground loops are essentially a more economic and space efficient version of a horizontal ground loop. Horizontal loops, when compared with vertical loops, have the disadvantage that during long cold winters, such systems dump more cold underground than calculated, and the ground receives more cold from the weather above than calculated. Both effects together often leads to a stark drop in ground temperature. In that case the heat pump uses much more electricity than it was designed to do under these circumstances. This problem can be reduced by increasing both the depth and the meters of piping, and hence the installation cost. However, in the long term, such costs are earned back because they result in lower electricity bills.

If one wants a single house geothermal heat pump system with maximum energy efficiency, then oversized vertical loops are usually more cost efficient than oversized and extra deep horizontal loops.

Radial or directional drilling

As an alternative to trenching, loops may be laid by mini horizontal directional drilling. (mini-HDD) This technique can lay piping under yards, driveways, gardens or other structures without disturbing them, with a cost between those of trenching and vertical drilling. This system also differs from horizontal & vertical drilling as the loops are installed from one central chamber, further reducing the ground space needed. Radial drilling is often installed retrospectively (after the property has been built) due to the small nature of the equipment used and the ability to bore beneath existing constructions.

Pond

A closed pond loop is not common because it depends on proximity to a body of water, where an open loop system is usually preferable. A pond loop may be advantageous where poor water quality precludes an open loop, or where the system heat load is small. A pond loop consists of coils of pipe similar to a slinky loop attached to a frame and located at the bottom of an appropriately sized pond or water source.

Open loop

In an open loop system (also called a groundwater heat pump), the secondary loop pumps natural water from a well or body of water into a heat exchanger inside the heat pump. ASHRAE calls open loop systems groundwater heat pumps or surface water heat pumps, depending on the source. Heat is either extracted or added by the primary refrigerant loop, and the water is returned to a separate injection well
Injection well
An injection well is a vertical pipe in the ground into which water, other liquids, or gases are pumped or allowed to flow.-Waste disposal: One application is waste water disposal, in which treated waste water is injected into the ground between impermeable layers of rocks to avoid polluting fresh...

, irrigation trench, tile field or body of water. The supply and return lines must be placed far enough apart to ensure thermal recharge of the source. Since the water chemistry is not controlled, the appliance may need to be protected from corrosion by using different metals in the heat exchanger and pump. Limescale
Limescale
Limescale is the hard, off-white, chalky deposit found in kettles, hot-water boilers and the inside of inadequately maintained hot-water central heating systems...

 may foul
Fouling
Fouling refers to the accumulation of unwanted material on solid surfaces, most often in an aquatic environment. The fouling material can consist of either living organisms or a non-living substance...

 the system over time and require periodic acid cleaning. This is much more of a problem with cooling systems than heating systems. Also, as fouling decreases the flow of natural water, it becomes difficult for the heat pump to exchange building heat with the groundwater. If the water contains high levels of salt, minerals, iron bacteria or hydrogen sulfide, a closed loop system is usually preferable.

Deep lake water cooling
Deep lake water cooling
Deep lake water cooling uses cold water pumped from the bottom of a lake as a heat sink for climate control systems. Because heat pump efficiency improves as the heat sink gets colder, deep lake water cooling can reduce the electrical demands of large cooling systems where it is available...

 uses a similar process with an open loop for air conditioning and cooling. Open loop systems using ground water are usually more efficient than closed systems because they are better coupled with ground temperatures. Closed loop systems, in comparison, have to transfer heat across extra layers of pipe wall and dirt.

A growing number of jurisdictions have outlawed open-loop systems that drain to the surface because these may drain aquifers or contaminate wells. This forces the use of more environmentally sound injection wells.

Standing column well

A standing column well system is a specialized type of open loop system. Water is drawn from the bottom of a deep rock well, passed through a heat pump, and returned to the top of the well, where traveling downwards it exchanges heat with the surrounding bedrock. The choice of a standing column well system is often dictated where there is near-surface bedrock and limited surface area is available. A standing column is typically not suitable in locations where the geology is mostly clay, silt, or sand. If bedrock is deeper than 200 feet (61 m) from the surface, the cost of casing to seal off the overburden may become prohibitive.

A multiple standing column well system can support a large structure in an urban or rural application. The standing column well method is also popular in residential and small commercial applications. There are many successful applications of varying sizes and well quantities in the many boroughs of New York City, and is also the most common application in the New England states. This type of ground source system has some heat storage benefits, where heat is rejected from the building and the temperature of the well is raised, within reason, during the Summer cooling months which can then be harvested for heating in the Winter months, thereby increasing the efficiency of the heat pump system. As with closed loop systems, sizing of the standing column system is critical in reference to the heat loss and gain of the existing building. As the heat exchange is actually with the bedrock, using water as the transfer medium, a large amount of production capacity (water flow from the well) is not required for a standing column system to work. However, if there is adequate water production, then the thermal capacity of the well system can be enhanced by discharging a small percentage of system flow during the peak Summer and Winter months.

Since this is essentially a water pumping system, standing column well design requires critical considerations to obtain peak operating efficiency. Should a standing column well design be misapplied, leaving out critical shut-off valves for example, the result could be an extreme loss in efficiency and thereby cause operational cost to be higher than anticipated.

Building distribution

The heat pump is the central unit that becomes the heating and cooling plant for the building. Some models may cover space heating, space cooling, (space heating via conditioned air, hydronic systems and / or radiant heating
Radiant heating
Radiant heating is a technology for heating indoor and outdoor areas. Heating by radiant energy is observed everyday, the warmth of the sunshine being probably the most commonly observed example. Radiant heating as a technology is typically more narrowly defined...

 systems), domestic or pool water preheat (via the desuperheater function, demand hot water, and driveway ice melting all within one appliance with a variety of options with respect to controls, staging and zone control. The heat may be carried to its end use by circulating water or forced air. Almost all types of heat pumps are produced for commercial and residential applications.

Liquid-to-air heat pumps (also called water-to-air) output forced air, and are most commonly used to replace legacy forced air furnaces and central air conditioning systems. There are variations that allow for split systems, high-velocity systems, and ductless systems. Heat pumps cannot achieve as high of a fluid temperature as a conventional furnace, so they require a higher volume flow rate of air to compensate. When retrofitting a residence, the existing duct work may have to be enlarged to reduce the noise from the higher air flow.

Liquid-to-water heat pumps (also called water-to-water) are hydronic systems that use water to carry heating or cooling through the building. Systems such as radiant underfloor heating
Underfloor heating
Underfloor heating and cooling is a form of central heating and cooling which achieves indoor climate control for thermal comfort using conduction, radiation and convection...

, baseboard radiators, conventional cast iron radiators would use a liquid-to-water heat pump. These heat pumps are preferred for pool heating or domestic hot water pre-heat. Heat pumps can only heat water to about 50 °C (122 °F) efficiently, whereas a boiler normally reaches 65 –. Legacy radiators designed for these higher temperatures may have to be doubled in numbers when retrofitting a home. A hot water tank will still be needed to raise water temperatures above the heat pump's maximum, but pre-heating will save 25-50% of hot water costs.

Ground source heat pumps are especially well matched to underfloor heating and baseboard radiator systems which only require warm temperatures 40 °C (104 °F) to work well. Thus they are ideal for open plan offices. Using large surfaces such as floors, as opposed to radiators, distributes the heat more uniformly and allows for a lower water temperature. Wood or carpet floor coverings dampen this effect because the thermal transfer efficiency of these materials is lower than that of masonry floors (tile, concrete). Underfloor piping, ceiling or wall radiators can also be used for cooling in dry climates, although the temperature of the circulating water must be above the dew point
Dew point
The dew point is the temperature to which a given parcel of humid air must be cooled, at constant barometric pressure, for water vapor to condense into liquid water. The condensed water is called dew when it forms on a solid surface. The dew point is a saturation temperature.The dew point is...

 to ensure that atmospheric humidity does not condense on the radiator.

Combination heat pumps are available that can produce forced air and circulating water simultaneously and individually. These systems are largely being used for houses that have a combination of air and liquid conditioning needs, for example central air conditioning and pool heating.

Seasonal thermal storage

The efficiency of ground source heat pumps can be greatly improved by using seasonal thermal storage and interseasonal heat transfer. Heat captured and stored in thermal banks in the summer can be retrieved efficiently in the winter. Heat storage efficiency increases with scale, so this advantage is most significant in commercial or district heating
District heating
District heating is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating...

 systems.

Geosolar combisystems have been used to heat and cool a greenhouse using an aquifer
Aquifer
An aquifer is a wet underground layer of water-bearing permeable rock or unconsolidated materials from which groundwater can be usefully extracted using a water well. The study of water flow in aquifers and the characterization of aquifers is called hydrogeology...

 for thermal storage. In summer, the greenhouse is cooled with cold ground water. This heats the water in the aquifer which can become a warm source for heating in winter. The combination of cold and heat storage with heat pumps can be combined with water/humidity regulation. These principles are used to provide renewable heat
Renewable heat
Renewable heat is an application of renewable energy and it refers to the renewable generation of heat, rather than electrical power ....

 and renewable cooling to all kinds of buildings.

Also the efficiency of existing small heat pump installations can be improved by adding large, cheap, water filled solar collectors. These may be integrated into a to-be-overhauled parking lot, or in walls or roof constructions by installing one inch PE
Polyethylene
Polyethylene or polythene is the most widely used plastic, with an annual production of approximately 80 million metric tons...

 pipes into the outer layer.

Thermal efficiency

The net thermal efficiency
Thermal efficiency
In thermodynamics, the thermal efficiency is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, a boiler, a furnace, or a refrigerator for example.-Overview:...

 of a heat pump should take into account the efficiency of electricity generation and transmission, typically about 30%. Since a heat pump moves 3 to 5 times more heat energy than the electric energy it consumes, the total energy output is much greater than the input. This results in net thermal efficiencies greater than 100% for most electricity sources. Traditional combustion furnaces and electric heaters can never exceed 100% efficiency, but heat pumps provide extra energy by extracting it from the ground.

Geothermal heat pumps can reduce energy consumption— and corresponding air pollution emissions—up to 44% compared to air source heat
pumps and up to 72% compared to electric resistance heating with standard air-conditioning equipment.

The dependence of net thermal efficiency on the electricity infrastructure tends to be an unnecessary complication for consumers and is not applicable to hydroelectric power, so performance of heat pumps is usually expressed as the ratio of heating output or heat removal to electricity input. Cooling performance is typically expressed in units of BTU/hr/watt as the Energy Efficiency Ratio, (EER) while heating performance is typically reduced to dimensionless units as the Coefficient of Performance. (COP) The conversion factor is 3.41 BTU/hr/watt. Performance is influenced by all components of the installed system, including the soil conditions, the ground-coupled heat exchanger, the heat pump appliance, and the building distribution, but is largely determined by the "lift" between the input temperature and the output temperature.

For the sake of comparing heat pump appliances to each other, independently from other system components, a few standard test conditions have been established by the American Refrigerant Institute (ARI) and more recently by the International Organization for Standardization
International Organization for Standardization
The International Organization for Standardization , widely known as ISO, is an international standard-setting body composed of representatives from various national standards organizations. Founded on February 23, 1947, the organization promulgates worldwide proprietary, industrial and commercial...

. Standard ARI 330 ratings were intended for closed loop ground-source heat pumps, and assumes secondary loop water temperatures of 77 °F (25 °C) for air conditioning and 32 °F (0 °C) for heating. These temperatures are typical of installations in the northern US. Standard ARI 325 ratings were intended for open loop ground-source heat pumps, and include two sets of ratings for groundwater temperatures of 50 °F (10 °C) and 70 °F (21.1 °C). ARI 325 budgets more electricity for water pumping than ARI 330. Neither of these standards attempt to account for seasonal variations. Standard ARI 870 ratings are intended for direct exchange ground-source heat pumps. ASHRAE transitioned to ISO 13256-1 in 2001, which replaces ARI 320, 325 and 330. The new ISO standard produces slightly higher ratings because it no longer budgets any electricity for water pumps.

Efficient compressors, variable speed compressors and larger heat exchangers all contribute to heat pump efficiency. Residential ground source heat pumps on the market today have standard COPs ranging from 2.4 to 5.0 and EERs ranging from 10.6 to 30. To qualify for an Energy Star
Energy Star
Energy Star is an international standard for energy efficient consumer products originated in the United States of America. It was first created as a United States government program during the early 1990s, but Australia, Canada, Japan, New Zealand, Taiwan and the European Union have also adopted...

 label, heat pumps must meet certain minimum COP and EER ratings which depend on the ground heat exchanger type. For closed loop systems, the ISO 13256-1 heating COP must be 3.3 or greater and the cooling EER must be 14.1 or greater.

Actual installation conditions may produce better or worse efficiency than the standard test conditions. COP improves with a lower temperature difference between the input and output of the heat pump, so the stability of ground temperatures is important. If the loop field or water pump is undersized, the addition or removal of heat may push the ground temperature beyond standard test conditions, and performance will be degraded. Similarly, an undersized blower may allow the plenum coil to overheat and degrade performance.

Soil without artificial heat addition or subtraction and at depths of several meters or more remains at a relatively constant temperature year round. This temperature equates roughly to the average annual air-temperature of the chosen location, usually 7 – at a depth of six meters in the northern US. Because this temperature remains more constant than the air temperature throughout the seasons, geothermal heat pumps perform with far greater efficiency during extreme air temperatures than air conditioners and air-source heat pumps.

Standards ARI 210 and 240 define Seasonal Energy Efficiency Ratio
Seasonal energy efficiency ratio
The efficiency of air conditioners is often rated by the Seasonal Energy Efficiency Ratio which is defined by the Air Conditioning, Heating and Refrigeration Institute in its standard ARI 210/240, Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment.The SEER rating of...

 (SEER) and Heating Seasonal Performance Factors (HSPF) to account for the impact of seasonal variations on air source heat pumps. These numbers are normally not applicable and should not be compared to ground source heat pump ratings. However, Natural Resources Canada
Natural Resources Canada
The Department of Natural Resources , operating under the FIP applied title Natural Resources Canada , is the ministry of the government of Canada responsible for natural resources, energy, minerals and metals, forests, earth sciences, mapping and remote sensing...

 has adapted this approach to calculate typical seasonally adjusted HSPFs for ground-source heat pumps in Canada. The NRC HSPFs ranged from 8.7 to 12.8 BTU/hr/watt (2.6 to 3.8 in nondimensional factors, or 255% to 375% seasonal average electricity utilization efficiency) for the most populated regions of Canada. When combined with the thermal efficiency of electricity, this corresponds to net average thermal efficiencies of 100% to 150%.

Environmental impact

The US Environmental Protection Agency (EPA) has called ground source heat pumps the most energy-efficient, environmentally clean, and cost-effective space conditioning systems available. Heat pumps offer significant emission reductions potential, particularly where they are used for both heating and cooling and where the electricity is produced from renewable resources.

Ground-source heat pumps have unsurpassed thermal efficiencies and produce zero emissions locally, but their electricity supply includes components with high greenhouse gas emissions, unless the owner has opted for a 100% renewable energy
Renewable energy
Renewable energy is energy which comes from natural resources such as sunlight, wind, rain, tides, and geothermal heat, which are renewable . About 16% of global final energy consumption comes from renewables, with 10% coming from traditional biomass, which is mainly used for heating, and 3.4% from...

 supply. Their environmental impact therefore depends on the characteristics of the electricity supply.
Annual greenhouse gas savings from using a ground source heat pump instead of a high-efficiency furnace in a detached residence (assuming no specific supply of renewable energy)
Country Electricity CO2
Emissions Intensity 
GHG savings relative to
natural gas
Natural gas
Natural gas is a naturally occurring gas mixture consisting primarily of methane, typically with 0–20% higher hydrocarbons . It is found associated with other hydrocarbon fuel, in coal beds, as methane clathrates, and is an important fuel source and a major feedstock for fertilizers.Most natural...

 
heating oil
Heating oil
Heating oil, or oil heat, is a low viscosity, flammable liquid petroleum product used as a fuel for furnaces or boilers in buildings. Home heating oil is often abbreviated as HHO...

 
electric heating
Electric heating
Electric heating is any process in which electrical energy is converted to heat. Common applications include space heating, cooking, water heating and industrial processes. An electric heater is an electrical appliance that converts electrical energy into heat...

Canada 223 ton/GWh 2.7 ton/yr 5.3 ton/yr 3.4 ton/yr
Russia 351 ton/GWh 1.8 ton/yr 4.4 ton/yr 5.4 ton/yr
US 676 ton/GWh -0.5 ton/yr 2.2 ton/yr 10.3 ton/yr
China 839 ton/GWh -1.6 ton/yr 1.0 ton/yr 12.8 ton/yr


The GHG emissions savings from a heat pump over a conventional furnace can be calculated based on the following formula:
  • HL = seasonal heat load ≈ 80 GJ/yr for a modern detached house in the northern US
  • FI = emissions intensity of fuel = 50 kg(CO2)/GJ for natural gas, 73 for heating oil, 0 for 100% renewable energy
    Renewable energy
    Renewable energy is energy which comes from natural resources such as sunlight, wind, rain, tides, and geothermal heat, which are renewable . About 16% of global final energy consumption comes from renewables, with 10% coming from traditional biomass, which is mainly used for heating, and 3.4% from...

     such as wind, hydro, photovoltaic or solar thermal
  • AFUE = furnace efficiency ≈ 95% for a modern condensing furnace
  • COP = heat pump coefficient of performance ≈ 3.2 seasonally adjusted for northern US heat pump
  • EI = emissions intensity of electricity ≈ 200-800 ton(CO2)/GWh, depending on region


Ground-source heat pumps always produce less greenhouse gases than air conditioners, oil furnaces, and electric heating, but natural gas furnaces may be competitive depending on the greenhouse gas intensity of the local electricity supply. In countries like Canada and Russia with low emitting electricity infrastructure, a residential heat pump may save 5 tons of carbon dioxide per year relative to an oil furnace, or about as much as taking an average passenger car off the road. But in countries like China or US that are highly reliant on coal for electricity production, a heat pump may result in 1 or 2 tons more carbon dioxide emissions than a natural gas furnace.

The fluids used in closed loops may be designed to be biodegradable and non-toxic, but the refrigerant used in the heat pump cabinet and in direct exchange loops was, until recently, chlorodifluoromethane
Chlorodifluoromethane
Chlorodifluoromethane or difluoromonochloromethane is a hydrochlorofluorocarbon . This colorless gas is better known as HCFC-22, or R-22. It was once commonly used as a propellant and in air conditioning applications...

, which is an ozone depleting substance. Although harmless while contained, leaks and improper end-of-life disposal contribute to enlarging the ozone hole. For new construction, this refrigerant is being phased out in favor of the ozone-friendly but potent greenhouse gas R410A. The EcoCute
EcoCute
The EcoCute is an energy efficient electric heat pump, water heating and supply system that uses heat extracted from the air to heat water for domestic, industrial and commercial use. Instead of the more conventional ammonia or haloalkane gases, EcoCute uses supercritical carbon dioxide as a...

 water heater is an air-source heat pump that uses Carbon Dioxide
Carbon dioxide
Carbon dioxide is a naturally occurring chemical compound composed of two oxygen atoms covalently bonded to a single carbon atom...

 as its working fluid instead of Chlorofluorocarbons.

Open loop systems that draw water from a well and drain to the surface may contribute to aquifer
Aquifer
An aquifer is a wet underground layer of water-bearing permeable rock or unconsolidated materials from which groundwater can be usefully extracted using a water well. The study of water flow in aquifers and the characterization of aquifers is called hydrogeology...

 depletion, water shortages, groundwater contamination, and subsidence of the soil. A geothermal heating project in Staufen im Breisgau, Germany, is suspected to have caused considerable damage to buildings in the city center. The ground has subsided by up to eight millimeters under the city hall while other areas have been uplifted by a few millimeters.

Ground-source heat pump technology, like building orientation, is a natural building
Natural building
A natural building involves a range of building systems and materials that place major emphasis on sustainability. Ways of achieving sustainability through natural building focus on durability and the use of minimally processed, plentiful or renewable resources, as well as those that, while...

 technique (bioclimatic building).

Economics

Ground source heat pumps are characterized by high capital costs and low operational costs compared to other HVAC
HVAC
HVAC refers to technology of indoor or automotive environmental comfort. HVAC system design is a major subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer...

 systems. Their overall economic benefit depends primarily on the relative costs of electricity and fuels, which are highly variable over time and across the world. Based on recent prices, ground-source heat pumps currently have lower operational costs than any other conventional heating source almost everywhere in the world. Natural gas is the only fuel with competitive operational costs, and only in a handful of countries where it is exceptionally cheap, or where electricity is exceptionally expensive. In general, a homeowner may save anywhere from 20% to 60% annually on utilities by switching from an ordinary system to a ground-source system. However, many family size installations are reported to use much more electricity than their owners had expected from advertisements. This is often partly due to bad design or installation: Heat exchange capacity with groundwater is often too small, heating pipes in house floors are often too thin and too few, or heated floors are covered with wooden panels or carpets.

Capital costs and system lifespan have received much less study, and the return on investment
Return on investment
Return on investment is one way of considering profits in relation to capital invested. Return on assets , return on net assets , return on capital and return on invested capital are similar measures with variations on how “investment” is defined.Marketing not only influences net profits but also...

 is highly variable. One study found the total installed cost for a system with 10 kW (3 ton) thermal capacity for a detached rural residence in the US averaged $8000–$9000 in 1995 US dollars. More recent studies found an average cost of $14,000 in 2008 US dollars for the same size system. The US Department of Energy estimates a price of $7500 on its website, last updated in 2008. Prices over $20,000 are quoted in Canada, with one source placing them in the range of $30,000-$34,000 Canadian dollars. The rapid escalation in system price has been accompanied by rapid improvements in efficiency and reliability. Capital costs are known to benefit from economies of scale, particularly for open loop systems, so they are more cost-effective for larger commercial buildings and harsher climates. The initial cost can be two to five times that of a conventional heating system in most residential applications, new construction or existing. In retrofits, the cost of installation is affected by the size of living area, the home's age, insulation characteristics, the geology of the area, and location of the property. Proper duct system design and mechanical air exchange should be considered in the initial system cost.
Payback period for installing a ground source heat pump in a detached residence
Country Payback period for replacing
natural gas
Natural gas
Natural gas is a naturally occurring gas mixture consisting primarily of methane, typically with 0–20% higher hydrocarbons . It is found associated with other hydrocarbon fuel, in coal beds, as methane clathrates, and is an important fuel source and a major feedstock for fertilizers.Most natural...

 
heating oil
Heating oil
Heating oil, or oil heat, is a low viscosity, flammable liquid petroleum product used as a fuel for furnaces or boilers in buildings. Home heating oil is often abbreviated as HHO...

 
electric heating
Electric heating
Electric heating is any process in which electrical energy is converted to heat. Common applications include space heating, cooking, water heating and industrial processes. An electric heater is an electrical appliance that converts electrical energy into heat...

Canada 13 years 3 years 6 years
US 12 years 5 years 4 years
Germany net loss 8 years 2 years
Notes:
  • Highly variable with energy prices.
  • Government subsidies not included.
  • Climate differences not evaluated.


Capital costs may be offset by substantial subsidies from many governments, for example totaling over $7000 in Ontario for residential systems installed in the 2009 fiscal year. Some electric companies offer special rates to customers who install a ground-source heat pump for heating/cooling their building. This is due to the fact that electrical plants have the largest loads during summer months and much of their capacity sits idle during winter months. This allows the electric company to use more of their facility during the winter months and sell more electricity. It also allows them to reduce peak usage during the summer (due to the increased efficiency of heat pumps), thereby avoiding costly construction of new power plants. For the same reasons, other utility companies have started to pay for the installation of ground-source heat pumps at customer residences. They lease the systems to their customers for a monthly fee, at a net overall savings to the customer.

The lifespan of the system is longer than conventional heating and cooling systems. Good data on system lifespan is not yet available because the technology is too recent, but many early systems are still operational today after 25–30 years with routine maintenance. Most loop fields have warranties for 25 to 50 years and are expected to last at least 50 to 200 years. Ground-source heat pumps use electricity for heating the house. The higher investment above conventional oil, propane or electric systems may be returned in energy savings in 2–10 years for residential systems in the US. If compared to natural gas systems, the payback period can be much longer or non-existent. The payback period for larger commercial systems in the US is 1–5 years, even when compared to natural gas. Additionally, because geothermal heat pumps usually have no outdoor compressors or cooling towers, the risk of vandalism is reduced or eliminated, potentially extending a system's lifespan.

Ground source heat pumps are recognized as one of the most efficient heating and cooling systems on the market. They are often the second-most cost effective solution in extreme climates, (after co-generation), despite reductions in thermal efficiency due to ground temperature. (The ground source is warmer in climates that need strong air conditioning, and cooler in climates that need strong heating.)

Commercial systems maintenance costs in the US have historically been between $0.11 to $0.22 per m2 per year in 1996 dollars, much less than the average $0.54 per m2 per year for conventional HVAC systems.

Governments that promote renewable energy will likely offer incentives for the consumer (residential), or industrial markets. For example, in the United States, incentives are offered both on the state and federal levels of government. In the United Kingdom the Renewable Heat Incentive
Renewable Heat Incentive
The Renewable Heat Incentive is a payment system for the generation of heat from renewable energy sources introduced in the United Kingdom on 28 November 2011...

 provides a financial incentive for generation of renewable heat based on metered readings on an annual basis for 20 years for commercial buildings (and will do so for domestic buildings from October 2012).

Installation

Because of the technical knowledge and equipment needed to properly design and size the system (and install the piping if heat fusion is required), a GSHP system installation requires a professional's services. The International Ground Source Heat Pump Association (IGSHPA), Geothermal Exchange Organization (GEO), the Canadian GeoExchange Coalition and the Ground Source Heat Pump Association maintain listings of qualified installers in the US, Canada and the UK.

See also

  • Absorption heat pump
    Absorption heat pump
    Absorption heat pump is essentially an air-source heat pump driven not by electricity, but by a heat source such as solar-heated water, or geothermal-heated water...

  • Earth cooling tubes
    Earth cooling tubes
    A ground-coupled heat exchanger is an underground heat exchanger loop that can capture or dissipate heat to or from the ground. They use the Earth's near constant subterranean temperature to warm or cool air or other fluids for residential, agricultural or industrial uses...

  • Solar thermal cooling
  • Thermosiphon
    Thermosiphon
    Thermosiphon refers to a method of passive heat exchange based on natural convection which circulates liquid without the necessity of a mechanical pump...


External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK