Isotopes of iridium
Encyclopedia
There are two natural isotope
Isotope
Isotopes are variants of atoms of a particular chemical element, which have differing numbers of neutrons. Atoms of a particular element by definition must contain the same number of protons but may have a distinct number of neutrons which differs from atom to atom, without changing the designation...

s of iridium
Iridium
Iridium is the chemical element with atomic number 77, and is represented by the symbol Ir. A very hard, brittle, silvery-white transition metal of the platinum family, iridium is the second-densest element and is the most corrosion-resistant metal, even at temperatures as high as 2000 °C...

(Ir), and 34 radioisotopes, the most stable radioisotope being 192Ir with a half-life
Half-life
Half-life, abbreviated t½, is the period of time it takes for the amount of a substance undergoing decay to decrease by half. The name was originally used to describe a characteristic of unstable atoms , but it may apply to any quantity which follows a set-rate decay.The original term, dating to...

 of 73.83 days, and many nuclear isomer
Nuclear isomer
A nuclear isomer is a metastable state of an atomic nucleus caused by the excitation of one or more of its nucleons . "Metastable" refers to the fact that these excited states have half-lives more than 100 to 1000 times the half-lives of the other possible excited nuclear states...

s, the most stable of which is 192m2Ir with a half-life of 241 years, all other isomers have half-lives under a year, most under a day.

Standard atomic mass: 192.217(3) u

Iridium-192

Iridium-192 (symbol 192Ir) is a radioactive isotope
Isotope
Isotopes are variants of atoms of a particular chemical element, which have differing numbers of neutrons. Atoms of a particular element by definition must contain the same number of protons but may have a distinct number of neutrons which differs from atom to atom, without changing the designation...

 of iridium
Iridium
Iridium is the chemical element with atomic number 77, and is represented by the symbol Ir. A very hard, brittle, silvery-white transition metal of the platinum family, iridium is the second-densest element and is the most corrosion-resistant metal, even at temperatures as high as 2000 °C...

, with a half-life
Half-life
Half-life, abbreviated t½, is the period of time it takes for the amount of a substance undergoing decay to decrease by half. The name was originally used to describe a characteristic of unstable atoms , but it may apply to any quantity which follows a set-rate decay.The original term, dating to...

 of 73.83 days. It decays by emitting beta (β) particles and gamma (γ) radiation. About 96% of 192Ir decays occur via emission of β and γ radiation, leading to 192Pt-192. Some of the β particles is captured by other 192Ir nuclei, which are then converted to 192Os. Electron capture is responsible for the remaining 4% of 192Ir decays.

Iridium-192 is also a strong gamma ray emitter. There are seven principal energy packets produced during its disintegration process ranging from just over 0.2 to about 0.6 MeV. Iridium-192 is commonly used as a gamma ray source in industrial radiography
Industrial radiography
Industrial Radiography is the use of ionizing radiation to view objects in a way that cannot be seen otherwise. It is not to be confused with the use of ionizing radiation to change or modify objects; radiography's purpose is strictly viewing. Industrial radiography has grown out of engineering,...

 to locate flaws in metal components. It is also used in radiotherapy as a radiation source.

Iridium-192 has accounted for the majority of cases tracked by the US Nuclear Regulatory Commission
Nuclear Regulatory Commission
The Nuclear Regulatory Commission is an independent agency of the United States government that was established by the Energy Reorganization Act of 1974 from the United States Atomic Energy Commission, and was first opened January 19, 1975...

 in which radioactive materials have gone missing in quantities large enough to make a dirty bomb
Dirty bomb
A dirty bomb is a speculative radiological weapon that combines radioactive material with conventional explosives. The purpose of the weapon is to contaminate the area around the explosion with radioactive material, hence the attribute "dirty"....

.

Table

nuclide
symbol
Z(p
Proton
The proton is a subatomic particle with the symbol or and a positive electric charge of 1 elementary charge. One or more protons are present in the nucleus of each atom, along with neutrons. The number of protons in each atom is its atomic number....

)
N(n
Neutron
The neutron is a subatomic hadron particle which has the symbol or , no net electric charge and a mass slightly larger than that of a proton. With the exception of hydrogen, nuclei of atoms consist of protons and neutrons, which are therefore collectively referred to as nucleons. The number of...

)
 
isotopic mass (u)
 
half-life decay
mode(s)Abbreviations:
EC: Electron capture
Electron capture
Electron capture is a process in which a proton-rich nuclide absorbs an inner atomic electron and simultaneously emits a neutrino...


IT: Isomeric transition
Isomeric transition
An isomeric transition is a radioactive decay process that involves emission of a gamma ray from an atom where the nucleus is in an excited metastable state, referred to in its excited state, as a nuclear isomer....

daughter
isotope(s)Bold for stable isotopes, bold italics for nearly-stable isotopes (half-life longer than the age of the universe
Age of the universe
The age of the universe is the time elapsed since the Big Bang posited by the most widely accepted scientific model of cosmology. The best current estimate of the age of the universe is 13.75 ± 0.13 billion years within the Lambda-CDM concordance model...

)
nuclear
spin
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
excitation energy
164Ir 77 87 163.99220(44)# 1# ms 2-#
164mIr 270(110)# keV 94(27) µs 9+#
165Ir 77 88 164.98752(23)# <1# µs p
Proton emission
Proton emission is a type of radioactive decay in which a proton is ejected from a nucleus. Proton emission can occur from high-lying excited states in a nucleus following a beta decay, in which case the process is known as beta-delayed proton emission, or can occur from the ground state of very...

164Os 1/2+#
α
Alpha decay
Alpha decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle and thereby transforms into an atom with a mass number 4 less and atomic number 2 less...

 (rare)
161Re
165mIr 180(50)# keV 300(60) µs p (87%) 164Os 11/2-
α (13%) 161Re
166Ir 77 89 165.98582(22)# 10.5(22) ms α (93%) 162Re (2-)
p (7%) 165Os
166mIr 172(6) keV 15.1(9) ms α (98.2%) 162Re (9+)
p (1.8%) 165Os
167Ir 77 90 166.981665(20) 35.2(20) ms α (48%) 163Re 1/2+
p (32%) 166Os
β+
Beta decay
In nuclear physics, beta decay is a type of radioactive decay in which a beta particle is emitted from an atom. There are two types of beta decay: beta minus and beta plus. In the case of beta decay that produces an electron emission, it is referred to as beta minus , while in the case of a...

 (20%)
167Os
167mIr 175.3(22) keV 30.0(6) ms α (80%) 163Re 11/2-
β+ (20%) 167Os
p (.4%) 166Os
168Ir 77 91 167.97988(16)# 161(21) ms α 164Re high
β+ (rare) 168Os
168mIr 50(100)# keV 125(40) ms α 164Re low
169Ir 77 92 168.976295(28) 780(360) ms
[0.64(+46-24) s]
α 165Re 1/2+#
β+ (rare) 169Os
169mIr 154(24) keV 308(22) ms α (72%) 165Re 11/2-#
β+ (28%) 169Os
170Ir 77 93 169.97497(11)# 910(150) ms
[0.87(+18-12) s]
β+ (64%) 170Os low#
α (36%) 166Re
170mIr 270(70)# keV 440(60) ms high#
171Ir 77 94 170.97163(4) 3.6(10) s
[3.2(+13-7) s]
α (58%) 167Re 1/2+#
β+ (42%) 171Os
171mIr 180(30)# keV 1.40(10) s (11/2-)
172Ir 77 95 171.97046(11)# 4.4(3) s β+ (98%) 172Os (3+)
α (2%) 168Re
172mIr 280(100)# keV 2.0(1) s β+ (77%) 172Os (7+)
α (23%) 168Re
173Ir 77 96 172.967502(15) 9.0(8) s β+ (93%) 173Os (3/2+,5/2+)
α (7%) 169Re
173mIr 253(27) keV 2.20(5) s β+ (88%) 173Os (11/2-)
α (12%) 169Re
174Ir 77 97 173.966861(30) 7.9(6) s β+ (99.5%) 174Os (3+)
α (.5%) 170Re
174mIr 193(11) keV 4.9(3) s β+ (99.53%) 174Os (7+)
α (.47%) 170Re
175Ir 77 98 174.964113(21) 9(2) s β+ (99.15%) 175Os (5/2-)
α (.85%) 171Re
176Ir 77 99 175.963649(22) 8.3(6) s β+ (97.9%) 176Os
α (2.1%) 172Re
177Ir 77 100 176.961302(21) 30(2) s β+ (99.94%) 177Os 5/2-
α (.06%) 173Re
178Ir 77 101 177.961082(21) 12(2) s β+ 178Os
179Ir 77 102 178.959122(12) 79(1) s β+ 179Os (5/2)-
180Ir 77 103 179.959229(23) 1.5(1) min β+ 180Os (4,5)(+#)
181Ir 77 104 180.957625(28) 4.90(15) min β+ 181Os (5/2)-
182Ir 77 105 181.958076(23) 15(1) min β+ 182Os (3+)
183Ir 77 106 182.956846(27) 57(4) min β+ ( 99.95%) 183Os 5/2-
α (.05%) 179Re
184Ir 77 107 183.95748(3) 3.09(3) h β+ 184Os 5-
184m1Ir 225.65(11) keV 470(30) µs 3+
184m2Ir 328.40(24) keV 350(90) ns (7)+
185Ir 77 108 184.95670(3) 14.4(1) h β+ 185Os 5/2-
186Ir 77 109 185.957946(18) 16.64(3) h β+ 186Os 5+
186mIr 0.8(4) keV 1.92(5) h β+ 186Os 2-
IT
Isomeric transition
An isomeric transition is a radioactive decay process that involves emission of a gamma ray from an atom where the nucleus is in an excited metastable state, referred to in its excited state, as a nuclear isomer....

 (rare)
186Ir
187Ir 77 110 186.957363(7) 10.5(3) h β+ 187Os 3/2+
187m1Ir 186.15(4) keV 30.3(6) ms IT 187Ir 9/2-
187m2Ir 433.81(9) keV 152(12) ns 11/2-
188Ir 77 111 187.958853(8) 41.5(5) h β+ 188Os 1-
188mIr 970(30) keV 4.2(2) ms IT 188Ir 7+#
β+ (rare) 188Os
189Ir 77 112 188.958719(14) 13.2(1) d EC
Electron capture
Electron capture is a process in which a proton-rich nuclide absorbs an inner atomic electron and simultaneously emits a neutrino...

189Os 3/2+
189m1Ir 372.18(4) keV 13.3(3) ms IT 189Ir 11/2-
189m2Ir 2333.3(4) keV 3.7(2) ms (25/2)+
190Ir 77 113 189.9605460(18) 11.78(10) d β+ 190Os 4-
190m1Ir 26.1(1) keV 1.120(3) h IT 190Ir (1-)
190m2Ir 36.154(25) keV >2 µs (4)+
190m3Ir 376.4(1) keV 3.087(12) h (11)-
191Ir 77 114 190.9605940(18) Observationally StableBelieved to undergo α decay to 187Re 3/2+ 0.373(2)
191m1Ir 171.24(5) keV 4.94(3) s IT 191Ir 11/2-
191m2Ir 2120(40) keV 5.5(7) s
192Ir 77 115 191.9626050(18) 73.827(13) d β- (95.24%) 192Pt 4+
EC (4.76%) 192Os
192m1Ir 56.720(5) keV 1.45(5) min 1-
192m2Ir 168.14(12) keV 241(9) a (11-)
193Ir 77 116 192.9629264(18) Observationally StableBelieved to undergo α decay to 189Re 3/2+ 0.627(2)
193mIr 80.240(6) keV 10.53(4) d IT 193Ir 11/2-
194Ir 77 117 193.9650784(18) 19.28(13) h β- 194Pt 1-
194m1Ir 147.078(5) keV 31.85(24) ms IT 194Ir (4+)
194m2Ir 370(70) keV 171(11) d (10,11)(-#)
195Ir 77 118 194.9659796(18) 2.5(2) h β- 195Pt 3/2+
195mIr 100(5) keV 3.8(2) h β- (95%) 195Pt 11/2-
IT (5%) 195Ir
196Ir 77 119 195.96840(4) 52(1) s β- 196Pt (0-)
196mIr 210(40) keV 1.40(2) h β- (99.7%) 196Pt (10,11-)
IT 196Ir
197Ir 77 120 196.969653(22) 5.8(5) min β- 197Pt 3/2+
197mIr 115(5) keV 8.9(3) min β- (99.75%) 197Pt 11/2-
IT (.25%) 197Ir
198Ir 77 121 197.97228(21)# 8(1) s β- 198Pt
199Ir 77 122 198.97380(4) 20# s β- 199Pt 3/2+#



External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK