Magic (software)
Encyclopedia
Magic is a Very-large-scale integration
layout tool originally written by John Ousterhout
and his graduate students at UC Berkeley during the 1980s. Magic continues to be popular because it is free
(Berkeley open-source license
), easy to use, and easy to expand for specialized tasks. The current version is 7.5, but 6.x is still widely used.
The main difference between Magic and other VLSI design tools is its use of "corner-stitched" geometry, in which all layout is represented as a stack of planes, and each plane consists entirely of "tiles" (rectangles). The tiles must cover the entire plane. Each tile consists of an (X, Y) coordinate of its lower left-hand corner, and links to four tiles: the right-most neighbor on the top, the top-most neighbor on the right, the bottom-most neighbor on the left, and the left-most neighbor on the bottom. With the addition of the type of material represented by the tile, the layout geometry in the plane is exactly specified. The corner-stitched geometry representation leads to the concept of layout as "paint" to be applied to, or erased from, a canvas. This is considerably different from other tools that use the concept of layout as "objects" to be placed and manipulated separately from one another. Each concept has its own strengths and weaknesses in terms of both practical use and speed of computation. The corner-stitched representation is particularly well suited to searches within a single plane, for which it excels in speed. It is not particularly well suited to extremely large databases: The need to maintain four pointers for each tile, as well as the need to store tiles representing the space between areas of material on a layout, makes it more memory-intensive than object-based representations.
An extension to the corner-stitched geometry representation called the "split tile" method, added in version 7.1, allows true representation of non-Manhattan geometry. This method allows each tile in the database to specify two material types, in which case the tile is regarded as being bisected by a diagonal line from corner to corner, with one material type on one side of the diagonal and the other material type on the other side of the diagonal. An additional flag specifies whether the diagonal runs from the top left corner to the bottom right, or the top right corner to the bottom left. The split-tile method has the advantange that nearly all rules that apply to corner-stitched geometry apply, unaltered, to split tiles. A further advantage is that all non-Manhattan geometry must have corners lying on the database internal grid. This makes it impossible to generate geometry that is off-grid within a single plane, a rule error for most fabrication processes that is a common problem with object-based representations.
Magic features real-time design rule checking
, something that some costly commercial VLSI design software packages don't feature. Magic implements this by counting distance using Manhattan distance rather than Euclidean distance
, which is much faster to compute.
(Note from Magic developer Tim Edwards: Magic versions from 7.3 properly compute Euclidean distance when given the "drc euclidean on" command. Euclidean distance checks are a trivial extension of the Manhattan distance checks, and require very little overhead. On a straight-line edge, the Manhattan and Euclidean distances are the same. Only on corners do the two distances diverge. When checking corners, it is only necessary to keep track of the direction of search from the corner point. Any geometry found inside the square representing the Manhattan distance from the corner undergoes an additional check to see if the same geometry lies outside the quarter-circle radius representing the Euclidean distance. Since this additional check is applied only to geometry found in violation of the Manhattan distance rule, it is not invoked often, so the computational overhead is very small.)
Magic currently runs under Linux
, although versions exist for DOS
, OS/2
, and other operating systems. Magic is frequently used in conjunction with IRSIM and other simulation programs.
Very-large-scale integration
Very-large-scale integration is the process of creating integrated circuits by combining thousands of transistors into a single chip. VLSI began in the 1970s when complex semiconductor and communication technologies were being developed. The microprocessor is a VLSI device.The first semiconductor...
layout tool originally written by John Ousterhout
John Ousterhout
John Kenneth Ousterhout is the chairman of Electric Cloud, Inc. and a professor of computer science at Stanford University. He founded Electric Cloud with John Graham-Cumming. Ousterhout previously was a professor of computer science at University of California, Berkeley where he created the Tcl...
and his graduate students at UC Berkeley during the 1980s. Magic continues to be popular because it is free
Free software
Free software, software libre or libre software is software that can be used, studied, and modified without restriction, and which can be copied and redistributed in modified or unmodified form either without restriction, or with restrictions that only ensure that further recipients can also do...
(Berkeley open-source license
Open-source license
An open-source license is a copyright license for computer software that makes the source code available for everyone to use. This allows end users to review and modify the source code for their own customization and/or troubleshooting needs...
), easy to use, and easy to expand for specialized tasks. The current version is 7.5, but 6.x is still widely used.
The main difference between Magic and other VLSI design tools is its use of "corner-stitched" geometry, in which all layout is represented as a stack of planes, and each plane consists entirely of "tiles" (rectangles). The tiles must cover the entire plane. Each tile consists of an (X, Y) coordinate of its lower left-hand corner, and links to four tiles: the right-most neighbor on the top, the top-most neighbor on the right, the bottom-most neighbor on the left, and the left-most neighbor on the bottom. With the addition of the type of material represented by the tile, the layout geometry in the plane is exactly specified. The corner-stitched geometry representation leads to the concept of layout as "paint" to be applied to, or erased from, a canvas. This is considerably different from other tools that use the concept of layout as "objects" to be placed and manipulated separately from one another. Each concept has its own strengths and weaknesses in terms of both practical use and speed of computation. The corner-stitched representation is particularly well suited to searches within a single plane, for which it excels in speed. It is not particularly well suited to extremely large databases: The need to maintain four pointers for each tile, as well as the need to store tiles representing the space between areas of material on a layout, makes it more memory-intensive than object-based representations.
An extension to the corner-stitched geometry representation called the "split tile" method, added in version 7.1, allows true representation of non-Manhattan geometry. This method allows each tile in the database to specify two material types, in which case the tile is regarded as being bisected by a diagonal line from corner to corner, with one material type on one side of the diagonal and the other material type on the other side of the diagonal. An additional flag specifies whether the diagonal runs from the top left corner to the bottom right, or the top right corner to the bottom left. The split-tile method has the advantange that nearly all rules that apply to corner-stitched geometry apply, unaltered, to split tiles. A further advantage is that all non-Manhattan geometry must have corners lying on the database internal grid. This makes it impossible to generate geometry that is off-grid within a single plane, a rule error for most fabrication processes that is a common problem with object-based representations.
Magic features real-time design rule checking
Design rule checking
Design Rule Checking or Check is the area of Electronic Design Automation that determines whether the physical layout of a particular chip layout satisfies a series of recommended parameters called Design Rules...
, something that some costly commercial VLSI design software packages don't feature. Magic implements this by counting distance using Manhattan distance rather than Euclidean distance
Euclidean distance
In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" distance between two points that one would measure with a ruler, and is given by the Pythagorean formula. By using this formula as distance, Euclidean space becomes a metric space...
, which is much faster to compute.
(Note from Magic developer Tim Edwards: Magic versions from 7.3 properly compute Euclidean distance when given the "drc euclidean on" command. Euclidean distance checks are a trivial extension of the Manhattan distance checks, and require very little overhead. On a straight-line edge, the Manhattan and Euclidean distances are the same. Only on corners do the two distances diverge. When checking corners, it is only necessary to keep track of the direction of search from the corner point. Any geometry found inside the square representing the Manhattan distance from the corner undergoes an additional check to see if the same geometry lies outside the quarter-circle radius representing the Euclidean distance. Since this additional check is applied only to geometry found in violation of the Manhattan distance rule, it is not invoked often, so the computational overhead is very small.)
Magic currently runs under Linux
Linux
Linux is a Unix-like computer operating system assembled under the model of free and open source software development and distribution. The defining component of any Linux system is the Linux kernel, an operating system kernel first released October 5, 1991 by Linus Torvalds...
, although versions exist for DOS
DOS
DOS, short for "Disk Operating System", is an acronym for several closely related operating systems that dominated the IBM PC compatible market between 1981 and 1995, or until about 2000 if one includes the partially DOS-based Microsoft Windows versions 95, 98, and Millennium Edition.Related...
, OS/2
OS/2
OS/2 is a computer operating system, initially created by Microsoft and IBM, then later developed by IBM exclusively. The name stands for "Operating System/2," because it was introduced as part of the same generation change release as IBM's "Personal System/2 " line of second-generation personal...
, and other operating systems. Magic is frequently used in conjunction with IRSIM and other simulation programs.
External links
- Magic VLSI Layout Tool
- Magic, Man Pages & Tutorial
- Magic, Old version
- IRSIM