Magnetoplasmadynamic thruster
Encyclopedia
The Magnetoplasmadynamic (MPD) thruster (MPDT) is a form of electrically powered spacecraft propulsion which uses the Lorentz force
Lorentz force
In physics, the Lorentz force is the force on a point charge due to electromagnetic fields. It is given by the following equation in terms of the electric and magnetic fields:...

 (a force resulting from the interaction between a magnetic field and an electric current) to generate thrust. It is sometimes referred to as Lorentz Force Accelerator (LFA) or (mostly in Japan) MPD arcjet.

Generally, a gaseous fuel is ionized and fed into an acceleration chamber, where the magnetic and electrical fields are created using a power source. The particles are then propelled by the Lorentz force resulting from the interaction between the current flowing through the plasma and the magnetic field (which is either externally applied, or induced by the current) out through the exhaust chamber. Unlike chemical propulsion, there is no combustion of fuel. As with other electric propulsion variations, both specific impulse
Specific impulse
Specific impulse is a way to describe the efficiency of rocket and jet engines. It represents the derivative of the impulse with respect to amount of propellant used, i.e., the thrust divided by the amount of propellant used per unit time. If the "amount" of propellant is given in terms of mass ,...

 and thrust
Thrust
Thrust is a reaction force described quantitatively by Newton's second and third laws. When a system expels or accelerates mass in one direction the accelerated mass will cause a force of equal magnitude but opposite direction on that system....

 increase with power input, while thrust per watt drops.

There are two main types of MPD thrusters, applied-field and self-field. Applied-field thrusters have magnetic rings surrounding the exhaust chamber to produce the magnetic field, while self-field thrusters have a cathode extending through the middle of the chamber. Applied fields are necessary at lower power levels, where self-field configurations are too weak. Various propellants such as xenon
Xenon
Xenon is a chemical element with the symbol Xe and atomic number 54. The element name is pronounced or . A colorless, heavy, odorless noble gas, xenon occurs in the Earth's atmosphere in trace amounts...

, neon
Neon
Neon is the chemical element that has the symbol Ne and an atomic number of 10. Although a very common element in the universe, it is rare on Earth. A colorless, inert noble gas under standard conditions, neon gives a distinct reddish-orange glow when used in either low-voltage neon glow lamps or...

, argon
Argon
Argon is a chemical element represented by the symbol Ar. Argon has atomic number 18 and is the third element in group 18 of the periodic table . Argon is the third most common gas in the Earth's atmosphere, at 0.93%, making it more common than carbon dioxide...

, hydrazine
Hydrazine
Hydrazine is an inorganic compound with the formula N2H4. It is a colourless flammable liquid with an ammonia-like odor. Hydrazine is highly toxic and dangerously unstable unless handled in solution. Approximately 260,000 tons are manufactured annually...

, and lithium
Lithium
Lithium is a soft, silver-white metal that belongs to the alkali metal group of chemical elements. It is represented by the symbol Li, and it has the atomic number 3. Under standard conditions it is the lightest metal and the least dense solid element. Like all alkali metals, lithium is highly...

 have been used, with lithium generally being the best performer.

The VASIMR is a totally different type of engine that attempts to provide the same level of performance as MPD but operates on a totally different principles : it is an electrothermal device, where the energy is first applied to the propellant in order to increase its random kinetic energy (temperature), in case of VASIMR the propellant is heated using RF
Radio frequency
Radio frequency is a rate of oscillation in the range of about 3 kHz to 300 GHz, which corresponds to the frequency of radio waves, and the alternating currents which carry radio signals...

 and then a part of the thermal energy content of the propellant is converted into directed kinetic energy by using an appropriate nozzle, in this case a magnetic nozzle. Details on this engine can be found in the main Variable Specific Impulse Magnetoplasma Rocket
Variable specific impulse magnetoplasma rocket
The Variable Specific Impulse Magnetoplasma Rocket is an electro-magnetic thruster for spacecraft propulsion. It uses radio waves to ionize and heat a propellant and magnetic fields to accelerate the resulting plasma to generate thrust...

 article.

Advantages

In theory, MPD thrusters could produce extremely high specific impulses (Isp) with an exhaust velocity of up to and beyond 110,000 m/s, triple the value of current xenon-based ion thrusters, and about 20 times better than liquid rockets. MPD technology also has the potential for thrust levels of up to 200 newtons (N) (45 lbf), by far the highest for any form of electric propulsion, and nearly as high as many interplanetary chemical rockets. This would allow use of electric propulsion on missions which require quick delta-v
Delta-v
In astrodynamics a Δv or delta-v is a scalar which takes units of speed. It is a measure of the amount of "effort" that is needed to change from one trajectory to another by making an orbital maneuver....

 maneuvers (such as capturing into orbit around another planet), but with many times greater fuel efficiency.

Problems with MPDT

MPD thruster technology has been explored academically, but commercial interest has been low due to several remaining problems. One big problem is that power requirements on the order of hundreds of kilowatts are required for optimum performance. Current interplanetary spacecraft power systems (such as radioisotope thermoelectric generator
Radioisotope thermoelectric generator
A radioisotope thermoelectric generator is an electrical generator that obtains its power from radioactive decay. In such a device, the heat released by the decay of a suitable radioactive material is converted into electricity by the Seebeck effect using an array of thermocouples.RTGs can be...

s (RTGs)) and solar arrays are incapable of producing that much power. NASA's Project Prometheus
Project Prometheus
Project Prometheus was established in 2003 by NASA to develop nuclear-powered systems for long-duration space missions. This was NASA's first serious foray into nuclear spacecraft propulsion since the cancellation of the NERVA project in 1972...

 reactor was expected to generate power in the hundreds of kilowatts range but was discontinued in 2005.

A project to produce a space-going nuclear reactor designed to generate 600 kilowatts of electrical power began in 1963 and ran for most of the 1960s in the USSR. It was to power a communication satellite which was in the end not approved. Nuclear reactors supplying kilowatts of electrical power (of the order of ten times more than current RTG power supplies) have been orbited by the USSR: RORSAT
RORSAT
Radar Ocean Reconnaissance SATellite or RORSAT is the western name given to the Soviet Upravlyaemyj Sputnik Aktivnyj satellites. These satellites were launched between 1967 and 1988 to monitor NATO and merchant vessels using active radar...

; and TOPAZ
Topaz Nuclear Reactor
The TOPAZ nuclear reactor is a lightweight nuclear reactor developed for long term space use by the Soviet Union. Cooled by liquid metal, it uses a high-temperature moderator containing hydrogen and highly enriched fuel and produces electricity using a thermionic converter.-Nomenclature:In initial...

.

Plans to develop a megawatt-scale nuclear reactor for the use aboard a manned spaceship were announced in 2009 by Russian nuclear Kurchatov Institute
Kurchatov Institute
The Kurchatov Institute is Russia's leading research and development institution in the field of nuclear energy. In the Soviet Union it was known as I. V. Kurchatov Institute of Atomic Energy , abbreviated KIAE . It is named after Igor Kurchatov....

, national space agency Roskosmos, and confirmed by the President of Russia in November 2009 address.

Another plan, proposed by Bradley C. Edwards
Bradley C. Edwards
In space engineering, Bradley C. Edwards is a researcher who is notable for having worked on Space elevators. He received funding from NIAC from 2001 to 2003 to write a paper proposing a way in which one could be built...

, is to beam power from the ground. This plan utilizes 5 200 kW free electron laser
Free electron laser
A free-electron laser, or FEL, is a laser that shares the same optical properties as conventional lasers such as emitting a beam consisting of coherent electromagnetic radiation which can reach high power, but which uses some very different operating principles to form the beam...

s at 0.84 micrometres with adaptive optics
Adaptive optics
Adaptive optics is a technology used to improve the performance of optical systems by reducing the effect of wavefront distortions. It is used in astronomical telescopes and laser communication systems to remove the effects of atmospheric distortion, and in retinal imaging systems to reduce the...

 on the ground to beam power to the MPD-powered spacecraft, where it is converted to electricity by GaAs
Gaas
Gaas is a commune in the Landes department in Aquitaine in south-western France....

 photovoltaic panels. The tuning of the laser wavelength of 0.840 micrometres (1.48 eV per photon) and the PV panel bandgap of 1.43 eV to each other produces an estimated conversion efficiency of 59% and a predicted power density of up to 540 kW/m2. This would be sufficient to power a MPD upper stage, perhaps to lift satellites from LEO to GEO.

Another problem with MPD technology has been the degradation of cathodes due to evaporation driven by high current densities (in excess of 100 amps/cm^2). The use of lithium and barium propellant mixtures and multi-channel hollow cathodes has been shown in the laboratory to be a promising solution for the cathode erosion problem.

Research

Research on MPD thrusters has been carried out in the US, the former Soviet Union
Soviet Union
The Soviet Union , officially the Union of Soviet Socialist Republics , was a constitutionally socialist state that existed in Eurasia between 1922 and 1991....

, Japan, Germany, and Italy. Experimental prototypes were first flown on Soviet spacecraft and, most recently, in 1996, on the Japanese Space Flyer Unit
Space Flyer Unit
The was a spacecraft which was launched by Japan on Mar. 18, 1995.- Technical data :The Space Flyer Unit was launched from Tanegashima Space Center from a H-2 vehicle. It was carrying testing materials and research data that held value to NASA. They retrieved the data from the Space Flyer Unit by...

, which demonstrated the successful operation of a quasi-steady pulsed MPD thruster in space. Research at Moscow Aviation Institute, RKK Energiya, National Aerospace University, Kharkiv Aviation Institute University of Stuttgart
University of Stuttgart
The University of Stuttgart is a university located in Stuttgart, Germany. It was founded in 1829 and is organized in 10 faculties....

, ISAS
Institute of Space and Astronautical Science
is a Japanese national research organization of astrophysics using rockets, astronomical satellites and interplanetary probes. It is a division of Japan Aerospace Exploration Agency .- History :...

, Centrospazio, Alta S.p.A., Osaka University
Osaka University
, or , is a major national university located in Osaka, Japan. It is the sixth oldest university in Japan as the Osaka Prefectural Medical College, and formerly one of the Imperial Universities of Japan...

, University of Southern California
University of Southern California
The University of Southern California is a private, not-for-profit, nonsectarian, research university located in Los Angeles, California, United States. USC was founded in 1880, making it California's oldest private research university...

, Princeton University
Princeton University
Princeton University is a private research university located in Princeton, New Jersey, United States. The school is one of the eight universities of the Ivy League, and is one of the nine Colonial Colleges founded before the American Revolution....

's Electric Propulsion and Plasma Dynamics Lab (EPPDyL) (where MPD thruster research has continued uninterrupted since 1967), and NASA
NASA
The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation's civilian space program and for aeronautics and aerospace research...

 centers (Jet Propulsion Laboratory
Jet Propulsion Laboratory
Jet Propulsion Laboratory is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. The facility is headquartered in the city of Pasadena on the border of La Cañada Flintridge and Pasadena...

 and Glenn Research Center
Glenn Research Center
NASA John H. Glenn Research Center at Lewis Field is a NASA center, located within the cities of Brook Park, Cleveland and Fairview Park, Ohio between Cleveland Hopkins International Airport and the Cleveland Metroparks's Rocky River Reservation, and has other subsidiary facilities in Ohio...

), has resolved many problems related to the performance, stability and lifetime of MPD thrusters.

An MPD thruster was tested on board the Japanese Space Flyer Unit as part of EPEX (Electric Propulsion EXperiment) that was launched March 18, 1995 and retrieved by space shuttle mission STS-72
STS-72
STS-72 was a Space Shuttle Endeavour mission to capture and return to Earth a Japanese microgravity research spacecraft known as Space Flyer Unit...

 January 20, 1996. To date, it is the only operational MPD thruster to have flown in space as a propulsion system.

See also

  • Hall effect thruster
    Hall effect thruster
    In spacecraft propulsion, a Hall thruster is a type of ion thruster in which the propellant is accelerated by an electric field. Hall thrusters trap electrons in a magnetic field and then use the electrons to ionize propellant, efficiently accelerate the ions to produce thrust, and neutralize the...

  • Ion thruster
    Ion thruster
    An ion thruster is a form of electric propulsion used for spacecraft propulsion that creates thrust by accelerating ions. Ion thrusters are categorized by how they accelerate the ions, using either electrostatic or electromagnetic force. Electrostatic ion thrusters use the Coulomb force and...

  • Magnetohydrodynamics
    Magnetohydrodynamics
    Magnetohydrodynamics is an academic discipline which studies the dynamics of electrically conducting fluids. Examples of such fluids include plasmas, liquid metals, and salt water or electrolytes...

  • Magnetic sail
    Magnetic sail
    A magnetic sail or magsail is a proposed method of spacecraft propulsion which would use a static magnetic field to deflect charged particles radiated by the Sun as a plasma wind, and thus impart momentum to accelerate the spacecraft...

  • Pulsed plasma thruster
    Pulsed plasma thruster
    Pulsed plasma thrusters are a method of spacecraft propulsion also known as Plasma Jet Engines in general. They use an arc of electric current adjacent to a solid propellant, to produce a quick and repeatable burst of impulse...

  • Solar panels on spacecraft
    Solar panels on spacecraft
    Spacecraft operating in the inner solar system usually rely on the use of photovoltaic solar panels to derive electricity from sunlight. In the outer solar system, where the sunlight is too weak to produce sufficient power, radioisotope thermal generators are used as a power source.-History:The...

  • Spacecraft propulsion
    Spacecraft propulsion
    Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. There are many different methods. Each method has drawbacks and advantages, and spacecraft propulsion is an active area of research. However, most spacecraft today are propelled by forcing a gas from the...

  • VASIMR
  • List of plasma (physics) applications articles

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK