Ordered set
Encyclopedia
In order theory
in mathematics, a set with a binary relation
R on its elements that is reflexive
(for all a in the set, aRa), antisymmetric
(if aRb and bRa, then a = b) and transitive
(if aRb and bRc, then aRc) is described as a partially ordered set
or poset. If the binary relation is antisymmetric, transitive and also total (for all a and b in the set, aRb or bRa), then the set is a totally ordered set. If every non-empty subset has a least element, then the set is a well-ordered set
.
In information theory
, an ordered set is a non-data carrying set of bits as used in 8b/10b encoding
.
Order theory
Order theory is a branch of mathematics which investigates our intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and gives some basic definitions...
in mathematics, a set with a binary relation
Binary relation
In mathematics, a binary relation on a set A is a collection of ordered pairs of elements of A. In other words, it is a subset of the Cartesian product A2 = . More generally, a binary relation between two sets A and B is a subset of...
R on its elements that is reflexive
Reflexive relation
In mathematics, a reflexive relation is a binary relation on a set for which every element is related to itself, i.e., a relation ~ on S where x~x holds true for every x in S. For example, ~ could be "is equal to".-Related terms:...
(for all a in the set, aRa), antisymmetric
Antisymmetric relation
In mathematics, a binary relation R on a set X is antisymmetric if, for all a and b in Xor, equivalently,In mathematical notation, this is:\forall a, b \in X,\ R \and R \; \Rightarrow \; a = bor, equivalently,...
(if aRb and bRa, then a = b) and transitive
Transitive relation
In mathematics, a binary relation R over a set X is transitive if whenever an element a is related to an element b, and b is in turn related to an element c, then a is also related to c....
(if aRb and bRc, then aRc) is described as a partially ordered set
Partially ordered set
In mathematics, especially order theory, a partially ordered set formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation that indicates that, for certain pairs of elements in the...
or poset. If the binary relation is antisymmetric, transitive and also total (for all a and b in the set, aRb or bRa), then the set is a totally ordered set. If every non-empty subset has a least element, then the set is a well-ordered set
Well-order
In mathematics, a well-order relation on a set S is a strict total order on S with the property that every non-empty subset of S has a least element in this ordering. Equivalently, a well-ordering is a well-founded strict total order...
.
In information theory
Information theory
Information theory is a branch of applied mathematics and electrical engineering involving the quantification of information. Information theory was developed by Claude E. Shannon to find fundamental limits on signal processing operations such as compressing data and on reliably storing and...
, an ordered set is a non-data carrying set of bits as used in 8b/10b encoding
8B/10B encoding
In telecommunications, 8b/10b is a line code that maps 8-bit symbols to 10-bit symbols to achieve DC-balance and bounded disparity, and yet provide enough state changes to allow reasonable clock recovery. This means that the difference between the count of 1s and 0s in a string of at least 20 bits...
.