Phalloidin
Encyclopedia
Phalloidin is one of a group of toxin
s from the death cap (Amanita phalloides) known as phallotoxin
s.
in the 1930s. Phalloidin was ultimately purified and crystallized in 1937 by Heinrich's student and son-in-law Feodor Lynen (who won a Nobel Prize in 1964 for his work on cholesterol metabolism), and Heinrich's nephew Ulrich Wieland.
and poisoning the cell. Phalloidin binds specifically at the interface between F-actin subunits, locking adjacent subunits together. Phalloidin, a bicyclic heptapeptide, binds to actin filaments much more tightly than to actin monomers, leading to a decrease in the rate constant for the dissociation of actin subunits from filament ends, which essentially stabilizes actin filaments through the prevention of filament depolymerization. Moreover, phalloidin is found to inhibit the ATP hydrolysis activity of F-actin. Thus, phalloidin traps actin monomers in a conformation distinct from G-actin and it stabilizes the structure of F-actin by greatly reducing the rate constant for monomer dissociation, an event associated with the trapping of ADP. Overall, phalloidin is found to react stoichiometrically with actin, strongly promote actin polymerization, and stabilize actin polymers.
Phalloidin functions differently at various concentrations in cells. When introduced into the cytoplasm at low concentrations, phalloidin recruits the less polymerized forms of cytoplasmic actin as well as filamin into stable “islands” of aggregated actin polymers, yet it does not interfere with stress fibers, i.e. thick bundles of microfilaments. Wehland et al. also notes that at higher concentrations, phalloidin induces cellular contraction.
analogs and using them to stain actin filaments for light microscopy. Fluorescent derivatives of phalloidin have turned out to be enormously useful in localizing actin filaments in living or fixed cells as well as for visualizing individual actin filaments in vitro. A high-resolution technique was developed to detect F-actin at the light and electron microscopic levels by using phalloidin conjugated to the fluorophore eosin which acts as the fluorescent tag. In this method known as fluorescence photo-oxidation, fluorescent molecules can be utilized to drive the oxidation of diaminobenzidine (DAB) to create a reaction product that can be rendered electron dense and detectable by electron microscopy. The amount of fluorescence visualized can be used as a quantitative measure of the amount of filamentous actin there is in cells if saturating quantities of fluorescent phalloidin are used. Consequently, immunofluorescence microscopy along with microinjection of phalloidin can be used to evaluate the direct and indirect functions of cytoplasmic actin in its different stages of polymer formation. Therefore, fluorescent phalloidin can be used as an important tool in the study of actin networks at high resolution.
Toxin
A toxin is a poisonous substance produced within living cells or organisms; man-made substances created by artificial processes are thus excluded...
s from the death cap (Amanita phalloides) known as phallotoxin
Phallotoxin
The phallotoxins consist of at least seven compounds, all of which are bicyclic heptapeptides , isolated from the death cap . Phalloidin had been isolated in 1937 by Feodor Lynen, Heinrich Wieland's student and son-in-law, and Ulrich Wieland of the University of Munich...
s.
Background
Pioneering work on this toxin was done by the Nobel laureate Heinrich WielandHeinrich Otto Wieland
Heinrich Otto Wieland was a German chemist. He won the 1927 Nobel Prize in Chemistry for his research into the bile acids. In 1901 Wieland received his doctorate at the University of Munich while studying under Johannes Thiele...
in the 1930s. Phalloidin was ultimately purified and crystallized in 1937 by Heinrich's student and son-in-law Feodor Lynen (who won a Nobel Prize in 1964 for his work on cholesterol metabolism), and Heinrich's nephew Ulrich Wieland.
Function
Phalloidin binds F-actin, preventing its depolymerizationPolymer
A polymer is a large molecule composed of repeating structural units. These subunits are typically connected by covalent chemical bonds...
and poisoning the cell. Phalloidin binds specifically at the interface between F-actin subunits, locking adjacent subunits together. Phalloidin, a bicyclic heptapeptide, binds to actin filaments much more tightly than to actin monomers, leading to a decrease in the rate constant for the dissociation of actin subunits from filament ends, which essentially stabilizes actin filaments through the prevention of filament depolymerization. Moreover, phalloidin is found to inhibit the ATP hydrolysis activity of F-actin. Thus, phalloidin traps actin monomers in a conformation distinct from G-actin and it stabilizes the structure of F-actin by greatly reducing the rate constant for monomer dissociation, an event associated with the trapping of ADP. Overall, phalloidin is found to react stoichiometrically with actin, strongly promote actin polymerization, and stabilize actin polymers.
Phalloidin functions differently at various concentrations in cells. When introduced into the cytoplasm at low concentrations, phalloidin recruits the less polymerized forms of cytoplasmic actin as well as filamin into stable “islands” of aggregated actin polymers, yet it does not interfere with stress fibers, i.e. thick bundles of microfilaments. Wehland et al. also notes that at higher concentrations, phalloidin induces cellular contraction.
Use as an imaging tool
The property of phalloidin is a useful tool for investigating the distribution of F-actin in cells by labeling phalloidin with fluorescentFluorescence
Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation of a different wavelength. It is a form of luminescence. In most cases, emitted light has a longer wavelength, and therefore lower energy, than the absorbed radiation...
analogs and using them to stain actin filaments for light microscopy. Fluorescent derivatives of phalloidin have turned out to be enormously useful in localizing actin filaments in living or fixed cells as well as for visualizing individual actin filaments in vitro. A high-resolution technique was developed to detect F-actin at the light and electron microscopic levels by using phalloidin conjugated to the fluorophore eosin which acts as the fluorescent tag. In this method known as fluorescence photo-oxidation, fluorescent molecules can be utilized to drive the oxidation of diaminobenzidine (DAB) to create a reaction product that can be rendered electron dense and detectable by electron microscopy. The amount of fluorescence visualized can be used as a quantitative measure of the amount of filamentous actin there is in cells if saturating quantities of fluorescent phalloidin are used. Consequently, immunofluorescence microscopy along with microinjection of phalloidin can be used to evaluate the direct and indirect functions of cytoplasmic actin in its different stages of polymer formation. Therefore, fluorescent phalloidin can be used as an important tool in the study of actin networks at high resolution.