Polar modulation
Encyclopedia
Polar modulation is analogous to quadrature modulation
in the same way that polar coordinates are analogous to Cartesian coordinates. Quadrature modulation makes use of Cartesian coordinates, x and y. When considering quadrature modulation, the x axis is called the I (in-phase) axis, and the y axis is called the Q (quadrature) axis. Polar modulation makes use of polar coordinates, r (amplitude) and Θ (phase).
The quadrature modulator approach to digital radio
transmission requires a linear
RF power amplifier
which creates a design conflict between improving power efficiency or maintaining amplifier linearity. Compromising linearity causes degraded signal quality, usually by adjacent channel degradation, which can be a fundamental factor in limiting network performance and capacity. Additional problems with linear RF power amplifiers include device parametric restrictions, temperature instability, power control accuracy, wideband noise and production yields are also common. On the other hand compromising power efficiency increases power consumption (which reduces battery life in handheld devices) and generates more heat.
The issue of linearity in a power amplifier can theoretically be mitigated by requiring that the input signal of the power amplifier be "constant envelope", i.e. contain no amplitude variations. In a polar modulation system, the power amplifier input signal may vary only in phase. Amplitude modulation is then accomplished by directly controlling the gain of the power amplifier through changing or modulating its supply voltage. Thus a polar modulation system allows the use of highly non-linear power amplifier architectures
such as Class E and Class F.
In order to create the Polar signal, the phase transfer of the amplifier must be known over at least a 17 dB amplitude range. As the phase transitions from one to another, there will be an amplitude perturbation that can be calculated during the transition as,
where n is the number of samples of I and Q and should be sufficiently large to allow an accurate tracing of the signal. One hundred samples per symbol would be about the lowest number that is workable.
Now that the amplitude change of the signal is known, the phase error introduced by the amplifier at each amplitude change can be used to pre-distort the signal. One simply subtracts the phase error at each amplitude from the modulating I and Q signals.
in his 1874 quadruplex telegraph
– this allowed 4 signals to be sent along a pair of lines, 2 in each direction. Sending a signal in each direction had already been accomplished earlier, and Edison found that by combining amplitude and phase modulation (i.e., by polar modulation), he could double this to 4 signals – hence, quadruplex.
Quadrature modulation
Quadrature modulation is the general technique of modulating two carriers.Examples include Quadrature amplitude modulation, Phase-shift keying, and Minimum-shift keying.Constellation diagrams are used to examine the modulation in the 2-D signal space....
in the same way that polar coordinates are analogous to Cartesian coordinates. Quadrature modulation makes use of Cartesian coordinates, x and y. When considering quadrature modulation, the x axis is called the I (in-phase) axis, and the y axis is called the Q (quadrature) axis. Polar modulation makes use of polar coordinates, r (amplitude) and Θ (phase).
The quadrature modulator approach to digital radio
Digital radio
Digital radio has several meanings:1. Today the most common meaning is digital radio broadcasting technologies, such as the digital audio broadcasting system, also known as Eureka 147. In these systems, the analog audio signal is digitized into zeros and ones, compressed using formats such as...
transmission requires a linear
Linear amplifier
A linear amplifier is an electronic circuit whose output is proportional to its input, but capable of delivering more power into a load. The term usually refers to a type of radio-frequency power amplifier, some of which have output power measured in kilowatts, and are used in amateur radio...
RF power amplifier
Rf power amplifier
An RF power amplifier is a type of electronic amplifier used to convert a low-power radio-frequency signal into a larger signal of significant power, typically for driving the antenna of a transmitter...
which creates a design conflict between improving power efficiency or maintaining amplifier linearity. Compromising linearity causes degraded signal quality, usually by adjacent channel degradation, which can be a fundamental factor in limiting network performance and capacity. Additional problems with linear RF power amplifiers include device parametric restrictions, temperature instability, power control accuracy, wideband noise and production yields are also common. On the other hand compromising power efficiency increases power consumption (which reduces battery life in handheld devices) and generates more heat.
The issue of linearity in a power amplifier can theoretically be mitigated by requiring that the input signal of the power amplifier be "constant envelope", i.e. contain no amplitude variations. In a polar modulation system, the power amplifier input signal may vary only in phase. Amplitude modulation is then accomplished by directly controlling the gain of the power amplifier through changing or modulating its supply voltage. Thus a polar modulation system allows the use of highly non-linear power amplifier architectures
Switching amplifier
A class-D amplifier or switching amplifier is an electronic amplifier where all power devices are operated as binary switches. They are either fully on or fully off. Ideally, zero time is spent transitioning between those two states....
such as Class E and Class F.
In order to create the Polar signal, the phase transfer of the amplifier must be known over at least a 17 dB amplitude range. As the phase transitions from one to another, there will be an amplitude perturbation that can be calculated during the transition as,
where n is the number of samples of I and Q and should be sufficiently large to allow an accurate tracing of the signal. One hundred samples per symbol would be about the lowest number that is workable.
Now that the amplitude change of the signal is known, the phase error introduced by the amplifier at each amplitude change can be used to pre-distort the signal. One simply subtracts the phase error at each amplitude from the modulating I and Q signals.
History
Polar modulation was originally developed by Thomas EdisonThomas Edison
Thomas Alva Edison was an American inventor and businessman. He developed many devices that greatly influenced life around the world, including the phonograph, the motion picture camera, and a long-lasting, practical electric light bulb. In addition, he created the world’s first industrial...
in his 1874 quadruplex telegraph
Quadruplex telegraph
The Quadruplex telegraph is a type of electrical telegraph which allows a total of four separate signals to be transmitted and received on a single wire at the same time Quadruplex telegraphy thus implements a form of multiplexing.The technology was invented by American inventor Thomas Edison, who...
– this allowed 4 signals to be sent along a pair of lines, 2 in each direction. Sending a signal in each direction had already been accomplished earlier, and Edison found that by combining amplitude and phase modulation (i.e., by polar modulation), he could double this to 4 signals – hence, quadruplex.
External links
- Fundamentals of Digital Quadrature Modulation
- Matsushita (formerly Tropian)
- Sequoia Communications
- RF Micro Devices
- Skyworks
- Anadigics, Inc