Proctor compaction test
Encyclopedia
The Proctor compaction test is a laboratory method of experimentally determining the optimal moisture content at which a given soil
type will become most dense and achieve its maximum dry density
. The term Proctor is in honor of R. R. Proctor, who in 1933 showed that the dry density of a soil for a given compactive effort depends on the amount of water the soil contains during soil compaction
. His original test is most commonly referred to as the standard Proctor compaction test; later on, his test was updated to create the modified Proctor compaction test.
These laboratory tests generally consist of compacting soil at known moisture content into a cylindrical mould of standard dimensions using a compactive effort of controlled magnitude. The soil is usually compacted into the mould to a certain amount of equal layers, each receiving a number blows from a standard weighted hammer at a specified height. This process is then repeated for various moisture contents and the dry densities are determined for each. The graphical relationship of the dry density to moisture content is then plotted to establish the compaction curve. The maximum dry density is finally obtained from the peak point of the compaction curve and its corresponding moisture content, also known as the optimal moisture content.
The testing described is generally consistent with the American Society for Testing and Materials (ASTM) standards, and are similar to the American Association of State Highway and Transportation Officials
(AASHTO) standards. Currently, the procedures and equipment details for the standard Proctor compaction test is designated by ASTM D698 and AASHTO T99. Also, the modified Proctor compaction test is designated by ASTM D1557 and AASHTO T180.
began when taking his undergraduate studies at University of California, Berkeley. He was interested in the publications of Sir Alec Skempton
and his ideas on in situ behavior of natural clays. Skempton formulated concepts and porous water coefficients that are still widely used today. It was Proctor’s idea to take this concept a step further and formulate his own experimental conclusions to determine a solution for the in situ behaviors of clay and ground soils that cause it to be unsuitable for construction. His idea, which was later adopted and expounded upon by Skempton, involved the compaction of the soil to establish the maximum practically-achievable density of soils and aggregates (the "practically" stresses how the value is found experimentally and not theoretically).
In the early 1930s, he finally created a solution for determining the maximum density of soils. He found that in a controlled environment (or within a control volume), the soil could be compacted to the point where the air could be completely removed, simulating the effects of a soil in situ conditions. From this, the dry density could be determined by simply measuring the weight of the soil before and after compaction, calculating the moisture content, and furthermore calculating the dry density. Ralph R. Proctor went on to teach at the University of Arkansas.
In 1958, the modified Proctor compaction test was developed as an ASTM standard. A higher and more relevant compaction standard was necessary. There were larger and heavier compaction equipment
, like large vibratory compactors and heavier steam rollers. This equipment could produce higher dry densities in soils along with greater stability. These improved properties allowed for the transport of far heavier truck loads over roads and highways. During the 1970s and early 1980s the modified Proctor test became more widely used as a modern replacement for the standard Proctor test.
The "Modified Proctor" test, ASTM D1557 / AASHTO T180, uses the same mould, but uses a 10 lb. hammer falling through 18 inches, with 25 blows on each of five lifts, for a compactive effort of about 56,000 ft-lbf/ft³. Both tests allow the use of a larger mould, 6 inches in diameter and holding 1/13.333 ft³, if the soil or aggregate contains too large a proportion of gravel-sized particles to allow repeatability with the 4-inch mould. To ensure the same compactive effort, the number of blows per lift is increased to 56.
has developed a similar test, California Test 216, which measures the maximum wet density, and controls the compactive effort based on the weight, not the volume, of the test sample. The primary advantage of this test is that maximum density test results are available sooner, as evaporation of the compacted sample is not necessary.
Soil
Soil is a natural body consisting of layers of mineral constituents of variable thicknesses, which differ from the parent materials in their morphological, physical, chemical, and mineralogical characteristics...
type will become most dense and achieve its maximum dry density
Density
The mass density or density of a material is defined as its mass per unit volume. The symbol most often used for density is ρ . In some cases , density is also defined as its weight per unit volume; although, this quantity is more properly called specific weight...
. The term Proctor is in honor of R. R. Proctor, who in 1933 showed that the dry density of a soil for a given compactive effort depends on the amount of water the soil contains during soil compaction
Soil compaction
In Geotechnical engineering, soil compaction is the process in which a stress applied to a soil causes densification as air is displaced from the pores between the soil grains. When stress is applied that causes densification due to water being displaced from between the soil grains then...
. His original test is most commonly referred to as the standard Proctor compaction test; later on, his test was updated to create the modified Proctor compaction test.
These laboratory tests generally consist of compacting soil at known moisture content into a cylindrical mould of standard dimensions using a compactive effort of controlled magnitude. The soil is usually compacted into the mould to a certain amount of equal layers, each receiving a number blows from a standard weighted hammer at a specified height. This process is then repeated for various moisture contents and the dry densities are determined for each. The graphical relationship of the dry density to moisture content is then plotted to establish the compaction curve. The maximum dry density is finally obtained from the peak point of the compaction curve and its corresponding moisture content, also known as the optimal moisture content.
The testing described is generally consistent with the American Society for Testing and Materials (ASTM) standards, and are similar to the American Association of State Highway and Transportation Officials
American Association of State Highway and Transportation Officials
AASHTO, the American Association of State Highway and Transportation Officials, is a standards setting body which publishes specifications, test protocols and guidelines which are used in highway design and construction throughout the United States...
(AASHTO) standards. Currently, the procedures and equipment details for the standard Proctor compaction test is designated by ASTM D698 and AASHTO T99. Also, the modified Proctor compaction test is designated by ASTM D1557 and AASHTO T180.
History
Proctor's fascination with geotechnical engineeringGeotechnical engineering
Geotechnical engineering is the branch of civil engineering concerned with the engineering behavior of earth materials. Geotechnical engineering is important in civil engineering, but is also used by military, mining, petroleum, or any other engineering concerned with construction on or in the ground...
began when taking his undergraduate studies at University of California, Berkeley. He was interested in the publications of Sir Alec Skempton
Alec Skempton
Sir Alec Skempton FRS was a leader in and founding father of Soil Mechanics. As a founding member of the Institution of Civil Engineers' Soil Mechanics and Foundations committees he studied at City and Guilds College London and established the Soil Mechanics course at Imperial College London,...
and his ideas on in situ behavior of natural clays. Skempton formulated concepts and porous water coefficients that are still widely used today. It was Proctor’s idea to take this concept a step further and formulate his own experimental conclusions to determine a solution for the in situ behaviors of clay and ground soils that cause it to be unsuitable for construction. His idea, which was later adopted and expounded upon by Skempton, involved the compaction of the soil to establish the maximum practically-achievable density of soils and aggregates (the "practically" stresses how the value is found experimentally and not theoretically).
In the early 1930s, he finally created a solution for determining the maximum density of soils. He found that in a controlled environment (or within a control volume), the soil could be compacted to the point where the air could be completely removed, simulating the effects of a soil in situ conditions. From this, the dry density could be determined by simply measuring the weight of the soil before and after compaction, calculating the moisture content, and furthermore calculating the dry density. Ralph R. Proctor went on to teach at the University of Arkansas.
In 1958, the modified Proctor compaction test was developed as an ASTM standard. A higher and more relevant compaction standard was necessary. There were larger and heavier compaction equipment
Road roller
A road roller is a compactor type engineering vehicle used to compact soil, gravel, concrete, or asphalt in the construction of roads and foundations, similar rollers are used also at landfills or in agriculture.In some parts of the world, road rollers are still known colloquially as steam...
, like large vibratory compactors and heavier steam rollers. This equipment could produce higher dry densities in soils along with greater stability. These improved properties allowed for the transport of far heavier truck loads over roads and highways. During the 1970s and early 1980s the modified Proctor test became more widely used as a modern replacement for the standard Proctor test.
Theory of Soil compaction
Compaction is the process by which the bulk density of an aggregate of matter is increased by driving out air. For any soil, for a given amount of compactive effort, the density obtained depends on the moisture content. At very high moisture contents, the maximum dry density is achieved when the soil is compacted to nearly saturation, where (almost) all the air is driven out. At low moisture contents, the soil particles interfere with each other; addition of some moisture will allow greater bulk densities, with a peak density where this effect begins to be counteracted by the saturation of the soil.Comparison of tests
The original Proctor test, ASTM D698 / AASHTO T99, uses a 4 inches (101.6 mm) mould which holds 1/30th cubic foot of soil, and calls for compaction of three separate lifts of soil using 25 blows by a 5.5 lb hammer falling 12 inches, for a compactive effort of 12,400 ft-lbf/ft³.The "Modified Proctor" test, ASTM D1557 / AASHTO T180, uses the same mould, but uses a 10 lb. hammer falling through 18 inches, with 25 blows on each of five lifts, for a compactive effort of about 56,000 ft-lbf/ft³. Both tests allow the use of a larger mould, 6 inches in diameter and holding 1/13.333 ft³, if the soil or aggregate contains too large a proportion of gravel-sized particles to allow repeatability with the 4-inch mould. To ensure the same compactive effort, the number of blows per lift is increased to 56.
Alternative compaction testing
The California Department of TransportationCalifornia Department of Transportation
The California Department of Transportation is a government department in the U.S. state of California. Its mission is to improve mobility across the state. It manages the state highway system and is actively involved with public transportation systems throughout the state...
has developed a similar test, California Test 216, which measures the maximum wet density, and controls the compactive effort based on the weight, not the volume, of the test sample. The primary advantage of this test is that maximum density test results are available sooner, as evaporation of the compacted sample is not necessary.
See also
- Civil engineeringCivil engineeringCivil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including works like roads, bridges, canals, dams, and buildings...
- Earthworks (engineering)Earthworks (engineering)Earthworks are engineering works created through the moving or processing of quantities of soil or unformed rock.- Civil engineering use :Typical earthworks include roads, railway beds, causeways, dams, levees, canals, and berms...
- Geotechnical engineeringGeotechnical engineeringGeotechnical engineering is the branch of civil engineering concerned with the engineering behavior of earth materials. Geotechnical engineering is important in civil engineering, but is also used by military, mining, petroleum, or any other engineering concerned with construction on or in the ground...
- Granular materialGranular materialA granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact . The constituents that compose granular material must be large enough such that they are not subject to thermal motion fluctuations...
- Publications in geotechnical engineering
- Soil mechanicsSoil mechanicsSoil mechanics is a branch of engineering mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids and particles but soil may also contain organic solids, liquids, and gasses and other...