Raynaud surface
Encyclopedia
In mathematics, a Raynaud surface is a particular kind of algebraic surface
that was introduced in and named for . To be precise, a Raynaud surface is a quasi-elliptic surface over an algebraic curve
of genus
g greater than 1, such that all fibers are irreducible and the fibration has a section. The Kodaira vanishing theorem fails for such surfaces; in other words the Kodaira theorem, valid in algebraic geometry over the complex numbers, has such surfaces as counterexamples, and these can only exist in characteristic p.
Generalized Raynaud surfaces were introduced in , and give examples of surfaces of general type with global vector fields.
Algebraic surface
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two and so of dimension four as a smooth manifold.The theory of algebraic surfaces is much more complicated than that...
that was introduced in and named for . To be precise, a Raynaud surface is a quasi-elliptic surface over an algebraic curve
Algebraic curve
In algebraic geometry, an algebraic curve is an algebraic variety of dimension one. The theory of these curves in general was quite fully developed in the nineteenth century, after many particular examples had been considered, starting with circles and other conic sections.- Plane algebraic curves...
of genus
Genus (mathematics)
In mathematics, genus has a few different, but closely related, meanings:-Orientable surface:The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without rendering the resultant manifold disconnected. It...
g greater than 1, such that all fibers are irreducible and the fibration has a section. The Kodaira vanishing theorem fails for such surfaces; in other words the Kodaira theorem, valid in algebraic geometry over the complex numbers, has such surfaces as counterexamples, and these can only exist in characteristic p.
Generalized Raynaud surfaces were introduced in , and give examples of surfaces of general type with global vector fields.