Stericated 6-simplex
Encyclopedia

6-simplex

Stericated 6-simplex

Steritruncated 6-simplex

Stericantellated 6-simplex

Stericantitruncated 6-simplex

Steriruncinated 6-simplex

Steriruncitruncated 6-simplex

Steriruncicantellated 6-simplex

Steriruncicantitruncated 6-simplex
Orthogonal projections in A6 Coxeter plane

In six-dimensional geometry
Geometry
Geometry arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers ....

, a stericated 6-simplex is a convex uniform 6-polytope with 4th order truncations
Truncation (geometry)
In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex.- Uniform truncation :...

 (sterication) of the regular 6-simplex.

There are 8 unique sterications for the 6-simplex with permutations of truncations, cantellations, and runcinations.

Stericated 6-simplex

Stericated 6-simplex
Type uniform polypeton
Schläfli symbol t0,4{3,3,3,3,3}
Coxeter-Dynkin diagram
Coxeter-Dynkin diagram
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors...

s
5-faces 105
4-faces 700
Cells 1470
Faces 1400
Edges 630
Vertices 105
Vertex figure
Vertex figure
In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:...

Coxeter group
Coxeter group
In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example...

A6, [35], order 5040
Properties convex
Convex polytope
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn...


Coordinates

The vertices of the stericated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,1,1,2). This construction is based on facets of the stericated 7-orthoplex
Stericated 7-orthoplex
In seven-dimensional geometry, a stericated 7-orthoplex is a convex uniform 7-polytope with 4th order truncations of the regular 7-orthoplex....

.

Steritruncated 6-simplex

Steritruncated 6-simplex
Type uniform polypeton
Schläfli symbol t0,1,4{3,3,3,3,3}
Coxeter-Dynkin diagram
Coxeter-Dynkin diagram
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors...

s
5-faces 105
4-faces 945
Cells 2940
Faces 3780
Edges 2100
Vertices 420
Vertex figure
Vertex figure
In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:...

Coxeter group
Coxeter group
In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example...

A6, [35], order 5040
Properties convex
Convex polytope
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn...


Coordinates

The vertices of the steritruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,1,2,3). This construction is based on facets of the steritruncated 7-orthoplex.

Stericantellated 6-simplex

Stericantellated 6-simplex
Type uniform polypeton
Schläfli symbol t0,2,4{3,3,3,3,3}
Coxeter-Dynkin diagram
Coxeter-Dynkin diagram
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors...

s
5-faces 105
4-faces 1050
Cells 3465
Faces 5040
Edges 3150
Vertices 630
Vertex figure
Vertex figure
In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:...

Coxeter group
Coxeter group
In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example...

A6, [35], order 5040
Properties convex
Convex polytope
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn...


Coordinates

The vertices of the stericantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,2,2,3). This construction is based on facets of the stericantellated 7-orthoplex.

Stericantitruncated 6-simplex

stericantitruncated 6-simplex
Type uniform polypeton
Schläfli symbol t0,1,2,4{3,3,3,3,3}
Coxeter-Dynkin diagram
Coxeter-Dynkin diagram
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors...

s
5-faces 105
4-faces 1155
Cells 4410
Faces 7140
Edges 5040
Vertices 1260
Vertex figure
Vertex figure
In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:...

Coxeter group
Coxeter group
In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example...

A6, [35], order 5040
Properties convex
Convex polytope
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn...


Coordinates

The vertices of the stericanttruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,4). This construction is based on facets of the stericantitruncated 7-orthoplex.

Steriruncinated 6-simplex

steriruncinated 6-simplex
Type uniform polypeton
Schläfli symbol t0,3,4{3,3,3,3,3}
Coxeter-Dynkin diagram
Coxeter-Dynkin diagram
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors...

s
5-faces 105
4-faces 700
Cells 1995
Faces 2660
Edges 1680
Vertices 420
Vertex figure
Vertex figure
In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:...

Coxeter group
Coxeter group
In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example...

A6, [35], order 5040
Properties convex
Convex polytope
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn...


Coordinates

The vertices of the steriruncinated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,2,2,3,3). This construction is based on facets of the steriruncinated 7-orthoplex.

Steriruncitruncated 6-simplex

steriruncitruncated 6-simplex
Type uniform polypeton
Schläfli symbol t0,1,3,4{3,3,3,3,3}
Coxeter-Dynkin diagram
Coxeter-Dynkin diagram
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors...

s
5-faces 105
4-faces 945
Cells 3360
Faces 5670
Edges 4410
Vertices 1260
Vertex figure
Vertex figure
In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:...

Coxeter group
Coxeter group
In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example...

A6, [35], order 5040
Properties convex
Convex polytope
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn...


Coordinates

The vertices of the steriruncittruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,4). This construction is based on facets of the steriruncitruncated 7-orthoplex.

Steriruncicantellated 6-simplex

steriruncicantellated 6-simplex
Type uniform polypeton
Schläfli symbol t0,2,3,4{3,3,3,3,3}
Coxeter-Dynkin diagram
Coxeter-Dynkin diagram
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors...

s
5-faces 105
4-faces 1050
Cells 3675
Faces 5880
Edges 4410
Vertices 1260
Vertex figure
Vertex figure
In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:...

Coxeter group
Coxeter group
In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example...

A6, [35], order 5040
Properties convex
Convex polytope
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn...


Alternate names

  • Bistericantitruncated 6-simplex as t1,2,3,5{3,3,3,3,3}
  • Celliprismatorhombated heptapeton (Acronym: copril) (Jonathan Bowers)

Coordinates

The vertices of the steriruncitcantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,4). This construction is based on facets of the steriruncicantellated 7-orthoplex.

Steriruncicantitruncated 6-simplex

Steriuncicantitruncated 6-simplex
Type uniform polypeton
Schläfli symbol t0,1,2,3,4{3,3,3,3,3}
Coxeter-Dynkin diagram
Coxeter-Dynkin diagram
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors...

s
5-faces 105
4-faces 1155
Cells 4620
Faces 8610
Edges 7560
Vertices 2520
Vertex figure
Vertex figure
In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:...

Coxeter group
Coxeter group
In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example...

A6, [35], order 5040
Properties convex
Convex polytope
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn...


Coordinates

The vertices of the steriruncicantittruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,2,3,4,5). This construction is based on facets of the steriruncicantitruncated 7-orthoplex.

Related uniform 6-polytopes

The truncated 6-simplex is one of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group
Coxeter group
In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example...

, all shown here in A6 Coxeter plane orthographic projection
Orthographic projection
Orthographic projection is a means of representing a three-dimensional object in two dimensions. It is a form of parallel projection, where all the projection lines are orthogonal to the projection plane, resulting in every plane of the scene appearing in affine transformation on the viewing surface...

s.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK