Truncated dodecadodecahedron
Encyclopedia
In geometry
Geometry
Geometry arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers ....

, the truncated dodecadodecahedron is a nonconvex uniform polyhedron
Nonconvex uniform polyhedron
In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting...

, indexed as U59. It is given a Schläfli symbol t0,1,2{5/3,5}. It has 120 vertices and 54 faces: 30 squares, 12 decagon
Decagon
In geometry, a decagon is any polygon with ten sides and ten angles, and usually refers to a regular decagon, having all sides of equal length and each internal angle equal to 144°...

s, and 12 decagrams. The central region of the polyhedron is connected to the exterior via 20 small triangular holes.

The name truncated dodecadodecahedron is somewhat misleading: truncation of the dodecadodecahedron would produce rectangular faces rather than squares, and the pentagram faces of the dodecahedron would turn into truncated pentagrams rather than decagrams. However, it is the quasitruncation of the dodecadodecahedron, as defined by . For this reason, it is also known as the quasitruncated dodecadodecahedron. Coxeter et al. credit its discovery to a paper published in 1881 by Austrian mathematician Johann Pitsch.

Cartesian coordinates

Cartesian coordinates for the vertices of a truncated dodecadodecahedron are all the triples of numbers obtained by circular shifts and sign changes from the following points (where is the golden ratio
Golden ratio
In mathematics and the arts, two quantities are in the golden ratio if the ratio of the sum of the quantities to the larger quantity is equal to the ratio of the larger quantity to the smaller one. The golden ratio is an irrational mathematical constant, approximately 1.61803398874989...

):

Each of these five points has eight possible sign patterns and three possible circular shifts, giving a total of 120 different points.

As a Cayley graph

The truncated dodecadodecahedron forms a Cayley graph
Cayley graph
In mathematics, a Cayley graph, also known as a Cayley colour graph, Cayley diagram, group diagram, or colour group is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem and uses a specified, usually finite, set of generators for the group...

 for the symmetric group
Symmetric group
In mathematics, the symmetric group Sn on a finite set of n symbols is the group whose elements are all the permutations of the n symbols, and whose group operation is the composition of such permutations, which are treated as bijective functions from the set of symbols to itself...

 on five elements, as generated by two group members: one that swaps the first two elements of a five-tuple, and one that performs a circular shift
Circular shift
In combinatorial mathematics, a circular shift is the operation of rearranging the entries in a tuple, either by moving the final entry to the first position, while shifting all other entries to the next position, or by performing the inverse operation...

 operation on the last four elements. That is, the 120 vertices of the polyhedron may be placed in one-to-one correspondence with the 5! permutations on five elements, in such a way that the three neighbors of each vertex are the three permutations formed from it by swapping the first two elements or circularly shifting (in either direction) the last four elements.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK