Weighted space
Encyclopedia
In functional analysis
Functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure and the linear operators acting upon these spaces and respecting these structures in a suitable sense...

, a weighted space is a space of functions under a weighted norm, which is a finite norm
Norm (mathematics)
In linear algebra, functional analysis and related areas of mathematics, a norm is a function that assigns a strictly positive length or size to all vectors in a vector space, other than the zero vector...

 (or semi-norm) that involves multiplication by a particular function referred to as the weight.

Weights can be used to expand or reduce a space of considered functions. For example, in the space of functions from a set to under the norm defined by
,

Functions that have infinity as a limit point
Limit point
In mathematics, a limit point of a set S in a topological space X is a point x in X that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also contains a point of S other than x itself. Note that x does not have to be an element of S...

are excluded. However, the weighted norm is finite for many more functions, so the associated space contains more functions. Alternatively, the weighted norm is finite for many fewer functions.

When the weight is of the form , the weighted space is called polynomial-weighted.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK