Zinc finger nuclease
Encyclopedia
Zinc-finger nucleases are artificial restriction enzymes generated by fusing a zinc finger
Zinc finger
Zinc fingers are small protein structural motifs that can coordinate one or more zinc ions to help stabilize their folds. They can be classified into several different structural families and typically function as interaction modules that bind DNA, RNA, proteins, or small molecules...

 DNA-binding domain to a DNA-cleavage domain. Zinc finger
Zinc finger
Zinc fingers are small protein structural motifs that can coordinate one or more zinc ions to help stabilize their folds. They can be classified into several different structural families and typically function as interaction modules that bind DNA, RNA, proteins, or small molecules...

 domains can be engineered to target desired DNA sequences and this enables zinc-finger nucleases to target unique sequences within complex genomes. By taking advantage of endogenous DNA repair machinery, these reagents can be used to precisely alter the genomes of higher organisms.

DNA-cleavage domain

The non-specific cleavage domain from the type IIs restriction endonuclease FokI
FokI
The enzyme FokI, naturally found in Flavobacterium okeanokoites, is a bacterial type IIS restriction endonuclease consisting of an N-terminal DNA-binding domain and a non-specific DNA cleavage domain at the C-terminal...

 is typically used as the cleavage domain in ZFNs.
This cleavage domain must dimerize in order to cleave DNA
and thus a pair of ZFNs are required to target non-palindromic DNA sites. Standard ZFNs fuse the cleavage domain to the C-terminus of each zinc finger
Zinc finger
Zinc fingers are small protein structural motifs that can coordinate one or more zinc ions to help stabilize their folds. They can be classified into several different structural families and typically function as interaction modules that bind DNA, RNA, proteins, or small molecules...

 domain. In order to allow the two cleavage domains to dimerize and cleave DNA, the two individual ZFNs must bind opposite strands of DNA with their C-termini a defined distance apart. The most commonly used linker sequences between the zinc finger
Zinc finger
Zinc fingers are small protein structural motifs that can coordinate one or more zinc ions to help stabilize their folds. They can be classified into several different structural families and typically function as interaction modules that bind DNA, RNA, proteins, or small molecules...

 domain and the cleavage domain requires the 5' edge of each binding site to be separated by 5 to 7 bp.

Several different protein engineering
Protein engineering
Protein engineering is the process of developing useful or valuable proteins. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles....

 techniques have been employed to improve both the activity and specificity of the nuclease domain used in ZFNs. Directed evolution
Directed evolution
thumb|250px|right|An example of a possible round to evolve a protein based fluorescent sensor for a specific analyte using two consecutive FACS sortings...

 has been employed to generate a FokI variant with enhanced cleavage activity that the authors dubbed "Sharkey". Structure-based design has also been employed to improve the cleavage specificity of FokI by modifying the dimerization interface so that only the intended heterodimeric species are active.

DNA-binding domain

The DNA-binding domains of individual ZFNs typically contain between three and six individual zinc finger
Zinc finger
Zinc fingers are small protein structural motifs that can coordinate one or more zinc ions to help stabilize their folds. They can be classified into several different structural families and typically function as interaction modules that bind DNA, RNA, proteins, or small molecules...

 repeats and can each recognize between 9 and 18 basepairs. If the zinc finger
Zinc finger
Zinc fingers are small protein structural motifs that can coordinate one or more zinc ions to help stabilize their folds. They can be classified into several different structural families and typically function as interaction modules that bind DNA, RNA, proteins, or small molecules...

 domains are perfectly specific for their intended target site then even a pair of 3-finger ZFNs that recognize a total of 18 basepairs can theoretically target a single locus in a mammalian genome.

Various strategies have been developed to engineer Cys2His2 zinc fingers to bind desired sequences. These include both "modular assembly" and selection strategies that employ either phage display
Phage display
Phage display is a method for the study of protein–protein, protein–peptide, and protein–DNA interactions that uses bacteriophages to connect proteins with the genetic information that encodes them. Phage Display was originally invented by George P...

 or cellular selection systems.

The most straightforward method to generate new zinc-finger arrays is to combine smaller zinc-finger "modules" of known specificity. The most common modular assembly process involves combining three separate zinc fingers that can each recognize a 3 basepair DNA sequence to generate a 3-finger array that can recognize a 9 basepair target site. Other procedures can utilize either 1-finger or 2-finger modules to generate zinc-finger arrays with six or more individual zinc fingers. The main drawback with this procedure is the specificities of individual zinc fingers can overlap and can depend on the context of the surrounding zinc fingers and DNA. Without methods to account for this "context dependence", the standard modular assembly procedure often fails unless it is used to recognize sequences of the form (GNN)N.

Numerous selection methods have been used to generate zinc-finger arrays capable of targeting desired sequences. Initial selection efforts utilized phage display
Phage display
Phage display is a method for the study of protein–protein, protein–peptide, and protein–DNA interactions that uses bacteriophages to connect proteins with the genetic information that encodes them. Phage Display was originally invented by George P...

 to select proteins that bound a given DNA target from a large pool of partially randomized zinc-finger arrays. More recent efforts have utilized yeast one-hybrid systems, bacterial one-hybrid and two-hybrid systems, and mammalian cells. A promising new method to select novel zinc-finger arrays utilizes a bacterial two-hybrid system and has been dubbed "OPEN" by its creators. This system combines pre-selected pools of individual zinc fingers that were each selected to bind a given triplet and then utilizes a second round of selection to obtain 3-finger arrays capable of binding a desired 9-bp sequence. This system was developed by the Zinc-Finger Consortium as an alternative to commercial sources of engineered zinc-finger arrays.

(see: Zinc finger chimera
Zinc finger chimera
Zinc finger protein chimera are chimeric proteins composed of a DNA-binding zinc finger protein domain and another domain through which the protein exerts its effect...

 for more info on zinc finger selection techniques)

Applications

Zinc finger nucleases have become useful reagents for manipulating the genomes of many plants and animals including arabidopsis
Arabidopsis thaliana
Arabidopsis thaliana is a small flowering plant native to Europe, Asia, and northwestern Africa. A spring annual with a relatively short life cycle, arabidopsis is popular as a model organism in plant biology and genetics...

, tobacco
Tobacco
Tobacco is an agricultural product processed from the leaves of plants in the genus Nicotiana. It can be consumed, used as a pesticide and, in the form of nicotine tartrate, used in some medicines...

, soybean
Soybean
The soybean or soya bean is a species of legume native to East Asia, widely grown for its edible bean which has numerous uses...

, corn
Maize
Maize known in many English-speaking countries as corn or mielie/mealie, is a grain domesticated by indigenous peoples in Mesoamerica in prehistoric times. The leafy stalk produces ears which contain seeds called kernels. Though technically a grain, maize kernels are used in cooking as a vegetable...

, Drosophila melanogaster
Drosophila melanogaster
Drosophila melanogaster is a species of Diptera, or the order of flies, in the family Drosophilidae. The species is known generally as the common fruit fly or vinegar fly. Starting from Charles W...

, C. elegans
Caenorhabditis elegans
Caenorhabditis elegans is a free-living, transparent nematode , about 1 mm in length, which lives in temperate soil environments. Research into the molecular and developmental biology of C. elegans was begun in 1974 by Sydney Brenner and it has since been used extensively as a model...

, sea urchin
Strongylocentrotus purpuratus
The purple sea urchin, Strongylocentrotus purpuratus, lives along the eastern edge of the Pacific Ocean extending from Ensenada, Mexico to British Columbia, Canada. This sea urchin species is deep purple in color and lives in lower intertidal and nearshore subtidal communities...

,
silkworm,
zebrafish,, frog
Frog
Frogs are amphibians in the order Anura , formerly referred to as Salientia . Most frogs are characterized by a short body, webbed digits , protruding eyes and the absence of a tail...

s, mice
MICE
-Fiction:*Mice , alien species in The Hitchhiker's Guide to the Galaxy*The Mice -Acronyms:* "Meetings, Incentives, Conferencing, Exhibitions", facilities terminology for events...

, rat
Rat
Rats are various medium-sized, long-tailed rodents of the superfamily Muroidea. "True rats" are members of the genus Rattus, the most important of which to humans are the black rat, Rattus rattus, and the brown rat, Rattus norvegicus...

s, rabbit
Rabbit
Rabbits are small mammals in the family Leporidae of the order Lagomorpha, found in several parts of the world...

s, pig
Pig
A pig is any of the animals in the genus Sus, within the Suidae family of even-toed ungulates. Pigs include the domestic pig, its ancestor the wild boar, and several other wild relatives...

s, cattle
Cattle
Cattle are the most common type of large domesticated ungulates. They are a prominent modern member of the subfamily Bovinae, are the most widespread species of the genus Bos, and are most commonly classified collectively as Bos primigenius...

, and
various types of mammalian cells. Zinc finger nucleases have also been used in a mouse model of haemophilia
Haemophilia
Haemophilia is a group of hereditary genetic disorders that impair the body's ability to control blood clotting or coagulation, which is used to stop bleeding when a blood vessel is broken. Haemophilia A is the most common form of the disorder, present in about 1 in 5,000–10,000 male births...

 and an ongoing clinical trial is evaluating Zinc finger nucleases that disrupt the CCR5 gene in CD4+ human T-cells as a potential treatment for HIV/AIDS. ZFNs are also used for the creation of a new generation of genetic disease models called isogenic human disease models
Isogenic human disease models
Isogenic human disease models are a family of cells that are selected or engineered to accurately model the genetics of a specific patient population, in vitro . They are provided with a genetically matched ‘normal cell’ to provide an isogenic system to research disease biology and novel...

.

Disabling an allele

ZFNs can be used to disable dominant mutations in heterozygous individuals by producing double strand breaks (DSBs) in the DNA (see Genetic recombination
Genetic recombination
Genetic recombination is a process by which a molecule of nucleic acid is broken and then joined to a different one. Recombination can occur between similar molecules of DNA, as in homologous recombination, or dissimilar molecules, as in non-homologous end joining. Recombination is a common method...

) in the mutant allele which will, in the absence of a homologous template, be repaired by non-homologous end-joining (NHEJ). NHEJ repairs DSBs by joining the two ends together and usually produces no mutations, provided that the cut is clean and uncomplicated. In some instances however, the repair will be imperfect, resulting in deletion or insertion of base-pairs, producing frame-shift and preventing the production of the harmful protein. Multiple pairs of ZFNs can also be used to completely remove entire large segments of genomic sequence.

ZFNs have also been used modify disease-causing alleles in triplet repeat disorders. Expanded CAG/CTG repeat tracts are the genetic basis for more than a dozen inherited neurological disorders including Huntington’s disease, myotonic dystrophy, and several spinocerebellar ataxias. It has been demonstrated in human cells that ZFNs can direct double-strand breaks (DSBs) to CAG repeats and shrink the repeat from long pathological lengths to short, less toxic lengths.

Recently, a group of researchers have successfully applied the ZFN technology to genetically modify the gol pigment gene and the ntl gene in zebrafish embryo. Specific zinc-finger motifs were engineered to recognize distinct DNA sequences. The ZFN-encoding mRNA was injected into one-cell embryos and a high percentage of animals carried the desired mutations and phenotypes. Their research work demonstrated that ZFNs can specifically and efficiently create heritable mutant alleles at loci of interest in the germ line, and ZFN-induced alleles can be propagated in subsequent generations.

Similar research of using ZFNs to create specific mutations in zebrafish embryo has also been carried out by other research groups. The kdr gene in zebra fish encodes for the vascular endothelial growth factor-2 receptor. Mutagenic lesions at this target site was induced using ZFN technique by a group of researchers in US. They suggested that the ZFN technique allows straightforward generation of a targeted allelic series of mutants; it does not rely on the existence of species-specific embryonic stem cell lines and is applicable to other vertebrates, especially those whose embryos are easily available; finally, it is also feasible to achieve targeted knock-ins in zebrafish, therefore it is possible to create human disease models that are heretofore inaccessible.

Allele editing

ZFNs are also used to rewrite the sequence of an allele by invoking the homologous recombination
Homologous recombination
Homologous recombination is a type of genetic recombination in which nucleotide sequences are exchanged between two similar or identical molecules of DNA. It is most widely used by cells to accurately repair harmful breaks that occur on both strands of DNA, known as double-strand breaks...

 (HR) machinery to repair the DSB using the supplied DNA fragment as a template. The HR machinery searches for homology between the damaged chromosome and the extra-chromosomal fragment and copies the sequence of the fragment between the two broken ends of the chromosome, regardless of whether the fragment contains the original sequence. If the subject is homozygous for the target allele, the efficiency of the technique is reduced since the undamaged copy of the allele may be used as a template for repair instead of the supplied fragment.

Gene therapy

The success of gene therapy depends on the efficient insertion of therapeutic gene
Gene
A gene is a molecular unit of heredity of a living organism. It is a name given to some stretches of DNA and RNA that code for a type of protein or for an RNA chain that has a function in the organism. Living beings depend on genes, as they specify all proteins and functional RNA chains...

s at the appropriate chromosomal
Chromosome
A chromosome is an organized structure of DNA and protein found in cells. It is a single piece of coiled DNA containing many genes, regulatory elements and other nucleotide sequences. Chromosomes also contain DNA-bound proteins, which serve to package the DNA and control its functions.Chromosomes...

 target sites within the human genome
Genome
In modern molecular biology and genetics, the genome is the entirety of an organism's hereditary information. It is encoded either in DNA or, for many types of virus, in RNA. The genome includes both the genes and the non-coding sequences of the DNA/RNA....

, without causing cell injury, oncogenic mutations or an immune response. The construction of plasmid
Plasmid
In microbiology and genetics, a plasmid is a DNA molecule that is separate from, and can replicate independently of, the chromosomal DNA. They are double-stranded and, in many cases, circular...

 vectors is simple and straightforward. Custom-designed ZFNs that combine the non-specific cleavage domain (N) of FokI endonuclease with zinc-finger proteins (ZFPs) offer a general way to deliver a site-specific DSB to the genome, and stimulate local homologous recombination by several orders of magnitude. This makes targeted gene correction or genome editing a viable option in human cells. Since ZFN-encoded plasmids could be used to transiently express ZFNs to target a DSB to a specific gene locus in human cells, they offer an excellent way for targeted delivery of the therapeutic genes to a pre-selected chromosomal site. The ZFN-encoded plasmid-based approach has the potential to circumvent all the problems associated with the viral delivery of therapeutic genes. The first therapeutic applications of ZFNs are likely to involve ex vivo therapy using a patients own stem cells. After editing the stem cell genome, the cells could be expanded in culture and reinserted into the patient to produce differentiated cells with corrected functions. The initial targets will likely include the causes of monogenic diseases such as the IL2Rγ gene and the b-globin gene for gene correction and CCR5 gene for mutagenesis and disablement.

Off-target Cleavage

If the zinc finger
Zinc finger
Zinc fingers are small protein structural motifs that can coordinate one or more zinc ions to help stabilize their folds. They can be classified into several different structural families and typically function as interaction modules that bind DNA, RNA, proteins, or small molecules...

 domains are not specific enough for their target site or they do not target a unique site within the genome of interest, off-target cleavage may occur. Such off-target cleavage may lead to the production of enough double-strand breaks to overwhelm the repair machinery and consequently yield chromosomal rearrangements and/or cell death. Off-target cleavage events may also promote random integration of donor DNA.
Despite advances in engineering both more specific zinc finger
Zinc finger
Zinc fingers are small protein structural motifs that can coordinate one or more zinc ions to help stabilize their folds. They can be classified into several different structural families and typically function as interaction modules that bind DNA, RNA, proteins, or small molecules...

 domains and modified FokI
FokI
The enzyme FokI, naturally found in Flavobacterium okeanokoites, is a bacterial type IIS restriction endonuclease consisting of an N-terminal DNA-binding domain and a non-specific DNA cleavage domain at the C-terminal...

 cleavage domains
,
ZFN off-target activity is still a significant concern. Two separate methods have been demonstrated to decrease off-target cleavage for 3-finger ZFNs that target two adjacent 9-basepair sites.
Other groups use ZFNs with 4, 5 or 6 zinc fingers that target longer and presumably rarer sites and such ZFNs could theoretically yield less off-target activity. A comparison of a pair of 3-finger ZFNs and a pair of 4-finger ZFNs detected off-target cleavage in human cells at 31 loci for the 3-finger ZFNs and at 9 loci for the 4-finger ZFNs. Whole genome sequencing of C. elegans
Caenorhabditis elegans
Caenorhabditis elegans is a free-living, transparent nematode , about 1 mm in length, which lives in temperate soil environments. Research into the molecular and developmental biology of C. elegans was begun in 1974 by Sydney Brenner and it has since been used extensively as a model...

modified with a pair of 5-finger ZFNs found only the intended modification and a deletion at a site "unrelated to the ZFN site" indicating this pair of ZFNs was capable of targeting a unique site in the C. elegans
Caenorhabditis elegans
Caenorhabditis elegans is a free-living, transparent nematode , about 1 mm in length, which lives in temperate soil environments. Research into the molecular and developmental biology of C. elegans was begun in 1974 by Sydney Brenner and it has since been used extensively as a model...

genome.

Immunogenicity

As with many foreign proteins inserted into the human body, there is a risk of an immunological response against the therapeutic agent and the cells in which it is active. Since the protein will only need to be expressed transiently however, the time over which a response may develop is short.

Prospects

The ability to precisely manipulate the genomes of plants, animals and insects has numerous applications in basic research, agriculture, and human therapeutics. Using ZFNs to modify endogenous genes has traditionally been a difficult task due mainly to the challenge of generating zinc finger
Zinc finger
Zinc fingers are small protein structural motifs that can coordinate one or more zinc ions to help stabilize their folds. They can be classified into several different structural families and typically function as interaction modules that bind DNA, RNA, proteins, or small molecules...

 domains that target the desired sequence with sufficient specificity. Improved methods of engineering zinc finger
Zinc finger
Zinc fingers are small protein structural motifs that can coordinate one or more zinc ions to help stabilize their folds. They can be classified into several different structural families and typically function as interaction modules that bind DNA, RNA, proteins, or small molecules...

 domains and the availability of ZFNs from a commercial supplier now put this technology in the hands of increasing numbers of researchers. Several groups are also developing other types of engineered nucleases including engineered homing endonucleases
and nucleases based on engineered TAL effector
TAL effector
TAL effectors are proteins secreted by Xanthomonas bacteria via their type III secretion system when they infect various plant species...

s.
TAL effector nucleases (TALENs) are particularly interesting because TAL effectors appear to be very simple to engineer
and TALENs can be used to target endogenous loci in human cells. But to date no one has reported the isolation of clonal cell lines or transgenic organisms using such reagents. One type of ZFN, known as SB-728-T, has been tested for potential application in the treatment of HIV.

See also

  • Zinc finger
    Zinc finger
    Zinc fingers are small protein structural motifs that can coordinate one or more zinc ions to help stabilize their folds. They can be classified into several different structural families and typically function as interaction modules that bind DNA, RNA, proteins, or small molecules...

  • Gene targeting
    Gene targeting
    Gene targeting is a genetic technique that uses homologous recombination to change an endogenous gene. The method can be used to delete a gene, remove exons, add a gene, and introduce point mutations. Gene targeting can be permanent or conditional...

  • Zinc finger protein
    Zinc finger protein
    A zinc finger protein is a DNA-binding protein domain consisting of zinc fingers ranging from two in the Drosophila regulator ADR1, the more common three in mammalian Sp1 up to nine in TFIIIA...

  • Zinc finger chimera
    Zinc finger chimera
    Zinc finger protein chimera are chimeric proteins composed of a DNA-binding zinc finger protein domain and another domain through which the protein exerts its effect...

  • Protein engineering
    Protein engineering
    Protein engineering is the process of developing useful or valuable proteins. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles....

  • Genome engineering
    Genome engineering
    Genome engineering refers to the strategies and techniques developed in recent years for the targeted, specific modification of the genetic information – or genome – of living organisms....


External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK