Consolidation (geology)
Encyclopedia
Consolidation is a process by which soil
Soil
Soil is a natural body consisting of layers of mineral constituents of variable thicknesses, which differ from the parent materials in their morphological, physical, chemical, and mineralogical characteristics...

s decrease in volume
Volume
Volume is the quantity of three-dimensional space enclosed by some closed boundary, for example, the space that a substance or shape occupies or contains....

. According to Karl Terzaghi "consolidation is any process which involves decrease in water content of a saturated soil without replacement of water by air." In general it is the process in which reduction in volume takes place by expulsion of water under long term static loads. It occurs when stress
Stress (physics)
In continuum mechanics, stress is a measure of the internal forces acting within a deformable body. Quantitatively, it is a measure of the average force per unit area of a surface within the body on which internal forces act. These internal forces are a reaction to external forces applied on the body...

 is applied to a soil that causes the soil particles to pack together more tightly, therefore reducing its bulk volume. When this occurs in a soil that is saturated with water, water will be squeezed out of the soil. The magnitude of consolidation can be predicted by many different methods. In the Classical Method, developed by Terzaghi, soils are tested with an oedometer test
Oedometer tests
An oedometer test is a kind of geotechnical investigation performed in geotechnical engineering that measures a soil's consolidation properties. Oedometer tests are performed by applying different loads to a soil sample and measuring the deformation response...

 to determine their compression index. This can be used to predict the amount of consolidation.

When stress is removed from a consolidated soil, the soil will rebound, regaining some of the volume it had lost in the consolidation process. If the stress is reapplied, the soil will consolidate again along a recompression curve, defined by the recompression index. The soil which had its load removed is considered to be overconsolidated. This is the case for soils which have previously had glaciers on them. The highest stress that it has been subjected to is termed the preconsolidation stress. The over consolidation ratio or OCR is defined as the highest stress experienced divided by the current stress. A soil which is currently experiencing its highest stress is said to be normally consolidated and to have an OCR of one. A soil could be considered underconsolidated immediately after a new load is applied but before the excess pore water pressure
Pore water pressure
Pore water pressure refers to the pressure of groundwater held within a soil or rock, in gaps between particles . Pore water pressures in below the phreatic level are measured in piezometers...

 has had time to dissipate.

Spring analogy

The process of consolidation is often explained with an idealized system composed of a spring
Spring (device)
A spring is an elastic object used to store mechanical energy. Springs are usually made out of spring steel. Small springs can be wound from pre-hardened stock, while larger ones are made from annealed steel and hardened after fabrication...

, a container with a hole in its cover, and water. In this system, the spring represents the compressibility or the structure itself of the soil, and the water which fills the container represents the pore water in the soil.
  1. The container is completely filled with water, and the hole is closed. (Fully saturated soil)
  2. A load is applied onto the cover, while the hole is still unopened. At this stage, only the water resists the applied load. (Development of excess pore water pressure)
  3. As soon as the hole is opened, water starts to drain out through the hole and the spring shortens. (Drainage of excess pore water pressure)
  4. After some time, the drainage of water no longer occurs. Now, the spring alone resists the applied load. (Full dissipation of excess pore water pressure. End of consolidation)

Primary consolidation

This method assumes consolidation occurs in only one-dimension. Laboratory data is used to construct a plot of strain
Strain (materials science)
In continuum mechanics, the infinitesimal strain theory, sometimes called small deformation theory, small displacement theory, or small displacement-gradient theory, deals with infinitesimal deformations of a continuum body...

 or void ratio versus effective stress
Effective stress
Karl von Terzaghi first proposed the relationship for effective stress in 1936. For him, the term ‘effective’ meant the calculated stress that was effective in moving soil, or causing displacements...

 where the effective stress axis is on a logarithmic scale
Logarithmic scale
A logarithmic scale is a scale of measurement using the logarithm of a physical quantity instead of the quantity itself.A simple example is a chart whose vertical axis increments are labeled 1, 10, 100, 1000, instead of 1, 2, 3, 4...

. The plot's slope is the compression index or recompression index. The equation for consolidation settlement of a normally consolidated soil can then be determined to be:



where
δc is the settlement due to consolidation.
Cc is the compression index.
e0 is the initial void ratio.
H is the height of the soil.
σzf is the final vertical stress.
σz0 is the initial vertical stress.


Cc can be replaced by Cr (the recompression index) for use in overconsolidated soils where the final effective stress is less than the preconsolidation stress. When the final effective stress is greater than the preconsolidation stress, the two equations must be used in combination to model both the recompression portion and the virgin compression portion of the consolidation process, as follows:



where σzc is the preconsolidation stress of the soil.

Secondary compression

Secondary compression is the compression of soil that takes place after primary consolidation.
Even after the reduction of hydrostatic pressure some compression of soil takes place at slow rate.this is known as secondary compression.Secondary compression is caused by creep
Creep (deformation)
In materials science, creep is the tendency of a solid material to slowly move or deform permanently under the influence of stresses. It occurs as a result of long term exposure to high levels of stress that are below the yield strength of the material....

, viscous behavior of the clay-water system, compression of organic matter, and other processes. In sand
Sand
Sand is a naturally occurring granular material composed of finely divided rock and mineral particles.The composition of sand is highly variable, depending on the local rock sources and conditions, but the most common constituent of sand in inland continental settings and non-tropical coastal...

, settlement caused by secondary compression is negligible, but in peat
Peat
Peat is an accumulation of partially decayed vegetation matter or histosol. Peat forms in wetland bogs, moors, muskegs, pocosins, mires, and peat swamp forests. Peat is harvested as an important source of fuel in certain parts of the world...

, it is very significant. Due to secondary compression some of the highly viscous water between the points of contact is forced out.

Secondary compression is given by the formula



Where H0 is the height of the consolidating medium

e0 is the initial void ratio

Ca is the secondary compression index

t is what?

t90 is

Time dependency

The time for consolidation to occur can be predicted. Sometimes consolidation can take years. This is especially true in saturated clays because their hydraulic conductivity
Hydraulic conductivity
Hydraulic conductivity, symbolically represented as K, is a property of vascular plants, soil or rock, that describes the ease with which water can move through pore spaces or fractures. It depends on the intrinsic permeability of the material and on the degree of saturation...

 is extremely low, and this causes the water to take an exceptionally long time to drain out of the soil. While drainage is occurring, the pore water pressure
Pore water pressure
Pore water pressure refers to the pressure of groundwater held within a soil or rock, in gaps between particles . Pore water pressures in below the phreatic level are measured in piezometers...

is greater than normal because it is carrying part of the applied stress (as opposed to the soil particles).

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK