Demazure module
Encyclopedia
In mathematics, a Demazure module, introduced by . is a submodule of a finite dimensional representation generated by an extremal weight space under the action of a Borel subalgebra. The Demazure character formula, introduced by , gives the characters of Demazure modules, and is a generalization of the Weyl character formula
Weyl character formula
In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by ....

.
The dimension of a Demazure module is a polynomial in the highest weight, called a Demazure polynomial.

Demazure modules

Suppose that g is a complex semisimple Lie algebra, with a Borel subalgebra b containing a Cartan subalgebra h. An irreducible finite dimensional representation V of g splits as a sum of eigenspaces of h, and the highest weight space is 1-dimensional and is an eigenspace of b. The Weyl group
Weyl group
In mathematics, in particular the theory of Lie algebras, the Weyl group of a root system Φ is a subgroup of the isometry group of the root system. Specifically, it is the subgroup which is generated by reflections through the hyperplanes orthogonal to the roots, and as such is a finite reflection...

 W acts on the weights of V, and the conjugates wλ of the highest weight vector λ under this action are the extremal weights, whose weight spaces are all 1-dimensional.

A Demazure module is the b-submodule of V generated by the weight space of an extremal vector wλ, so the Demazure submodules of V are parametrized by the Weyl group W.

There are two extreme cases: if w is trivial the Demazure module is just 1-dimensional, and if w is the element of maximal length of W then the Demazure module is the whole of the irreducible representation V.

Demazure modules can be defined in a similar way for highest weight representations of Kac–Moody algebra
Kac–Moody algebra
In mathematics, a Kac–Moody algebra is a Lie algebra, usually infinite-dimensional, that can be defined by generators and relations through a generalized Cartan matrix...

s, except that one now has 2 cases as one can consider the submodules generated by either the Borel subalgebra b or its opposite subalgebra. In the finite dimensional these are exchanged by the longest element of the Weyl group, but this is no longer the case in infinite dimensions as there is no longest element.

History

The Demazure character formula was introduced by .
Victor Kac
Victor Kac
Victor G. Kac is a Soviet and American mathematician at MIT, known for his work in representation theory. He discovered Kac–Moody algebras, and used the Weyl–Kac character formula for them to reprove the Macdonald identities...

 pointed out that Demazure's proof has a serious gap, as it depends on , which is false; see for Kac's counterexample. gave a proof of Demazure's character formula using the work on the geometry of Schubert varieties by and . gave a proof for sufficiently large dominant highest weight modules using Lie algebra techniques. proved a refined version of the Demazure character formula that conjectured (and proved in many cases).

Statement

The Demazure character formula is
Here:
  • w is an element of the Weyl group, with reduced decomposition w = s1...sn as a product of reflections of simple roots.
  • λ is a lowest weight, and eλ the corresponding element of the group ring of the weight lattice.
  • Ch(F(wλ)) is the character of the Demazure module F(wλ).
  • P is the weight lattice, and Z[P] is its group ring.
  • Δα for α a root is the endomorphism of the Z-module Z[P] defined by
and Δj is Δα for α the root of sj
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK