Experimental Breeder Reactor II
Encyclopedia
Experimental Breeder Reactor-II (EBR-II) is a reactor at the Materials and Fuels Complex of the Idaho National Laboratory
, formerly the West Campus of Argonne National Laboratory
in Idaho.
It is a sodium
cooled reactor with a thermal power rating of 62.5 megawatts (MW), an intermediate closed loop of secondary sodium
, and a steam
plant that produces 19 MW of electrical power
through a conventional turbine
generator
. The original emphasis in the design and operation of EBR-II was to demonstrate a complete breeder-reactor power plant with on-site reprocessing of metallic fuel. The demonstration was successfully carried out from 1964 to 1969. The emphasis was then shifted to testing fuels and materials for future, larger, liquid metal reactors in the radiation
environment of the EBR-II reactor core. It operated as the Integral Fast Reactor
prototype. Costing more than US$32 million, it achieved first criticality in 1965 and ran for 30 years. It was designed to produce about 62.5 megawatts of heat and 20 megawatts of electricity, which was achieved in September 1969 and continued for most of its lifetime. Over its lifetime it has generated over two billion kilowatt-hours of electricity, providing a majority of the electricity and also heat to the facilities of the Argonne National Laboratory-West.
rods 5 millimeters in diameter and 13 inches ( 33 cm ) long . Enriched
to 67% uranium-235
when fresh, the concentration dropped to approximately 65% upon removal. The rods also contained 10% zirconium
. Each fuel element is placed inside a thin-walled stainless steel
tube along with a small amount of sodium
metal. The tube is welded shut at the top to form a unit 29 inches (73 cm) long. The purpose of the sodium is to function as a heat-transfer agent. As more and more of the uranium undergoes fission, it develops fissures and the sodium enters the voids. It extracts an important fission product, caesium
-137, and hence becomes intensely radioactive. The void above the uranium collects fission gases, mainly krypton
-85. Clusters of the pins inside hexagonal stainless steel jackets 92 inches ( 234 cm ) long are assembled honeycomb-like; each unit has about 10 pounds (4.5 kg ) of uranium. All together, the core contains about 680 pounds (308 kg ) of uranium fuel, and this part is called the driver.
The EBR-II core can accommodate as many as 65 experimental sub-assemblies for irradiation and operational reliability tests, fueled with a variety of metallic and ceramic fuels—the oxide
s, carbide
s, or nitride
s of uranium and plutonium
, and metallic fuel alloys such as uranium-plutonium-zirconium fuel. Other sub-assembly positions may contain structural-material experiments.
EBR-II is now defueled. The EBR-II shutdown activity also includes the treatment of its discharged spent fuel using an electrometallurgical fuel treatment process in the Fuel Conditioning Facility located next to the EBR-II.
The clean-up process for EBR-II includes the removal and processing of the sodium coolant, cleaning of the EBR-II sodium systems, removal and passivating of other chemical hazards and placing the deactivated components and structure in a safe condition.
power plant with on-site reprocessing of metallic fuel. In order to meet this objective of on-site reprocessing, the EBR-II was part of a wider complex of facilities, consisting of
(IFR), which was the intended successor to the EBR-II. The IFR program was started in 1983, but funding was withdrawn by U.S. Congress
in 1994, three years before the intended completion of the program. The Nuclear Energy division of General Electric
, which was involved in the development of the IFR, has presented a design for a commercial version of the IFR: the S-PRISM
reactor.
Idaho National Laboratory
Idaho National Laboratory is an complex located in the high desert of eastern Idaho, between the town of Arco to the west and the cities of Idaho Falls and Blackfoot to the east. It lies within Butte, Bingham, Bonneville and Jefferson counties...
, formerly the West Campus of Argonne National Laboratory
Argonne National Laboratory
Argonne National Laboratory is the first science and engineering research national laboratory in the United States, receiving this designation on July 1, 1946. It is the largest national laboratory by size and scope in the Midwest...
in Idaho.
It is a sodium
Sodium
Sodium is a chemical element with the symbol Na and atomic number 11. It is a soft, silvery-white, highly reactive metal and is a member of the alkali metals; its only stable isotope is 23Na. It is an abundant element that exists in numerous minerals, most commonly as sodium chloride...
cooled reactor with a thermal power rating of 62.5 megawatts (MW), an intermediate closed loop of secondary sodium
Sodium
Sodium is a chemical element with the symbol Na and atomic number 11. It is a soft, silvery-white, highly reactive metal and is a member of the alkali metals; its only stable isotope is 23Na. It is an abundant element that exists in numerous minerals, most commonly as sodium chloride...
, and a steam
Steam
Steam is the technical term for water vapor, the gaseous phase of water, which is formed when water boils. In common language it is often used to refer to the visible mist of water droplets formed as this water vapor condenses in the presence of cooler air...
plant that produces 19 MW of electrical power
Electric power
Electric power is the rate at which electric energy is transferred by an electric circuit. The SI unit of power is the watt.-Circuits:Electric power, like mechanical power, is represented by the letter P in electrical equations...
through a conventional turbine
Turbine
A turbine is a rotary engine that extracts energy from a fluid flow and converts it into useful work.The simplest turbines have one moving part, a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades, or the blades react to the flow, so that they move and...
generator
Electrical generator
In electricity generation, an electric generator is a device that converts mechanical energy to electrical energy. A generator forces electric charge to flow through an external electrical circuit. It is analogous to a water pump, which causes water to flow...
. The original emphasis in the design and operation of EBR-II was to demonstrate a complete breeder-reactor power plant with on-site reprocessing of metallic fuel. The demonstration was successfully carried out from 1964 to 1969. The emphasis was then shifted to testing fuels and materials for future, larger, liquid metal reactors in the radiation
Radiation
In physics, radiation is a process in which energetic particles or energetic waves travel through a medium or space. There are two distinct types of radiation; ionizing and non-ionizing...
environment of the EBR-II reactor core. It operated as the Integral Fast Reactor
Integral Fast Reactor
The Integral Fast Reactor is a design for a nuclear reactor using fast neutrons and no neutron moderator . IFR is distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.The U.S...
prototype. Costing more than US$32 million, it achieved first criticality in 1965 and ran for 30 years. It was designed to produce about 62.5 megawatts of heat and 20 megawatts of electricity, which was achieved in September 1969 and continued for most of its lifetime. Over its lifetime it has generated over two billion kilowatt-hours of electricity, providing a majority of the electricity and also heat to the facilities of the Argonne National Laboratory-West.
Design
The fuel consists of uraniumUranium
Uranium is a silvery-white metallic chemical element in the actinide series of the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons...
rods 5 millimeters in diameter and 13 inches ( 33 cm ) long . Enriched
Enriched uranium
Enriched uranium is a kind of uranium in which the percent composition of uranium-235 has been increased through the process of isotope separation. Natural uranium is 99.284% 238U isotope, with 235U only constituting about 0.711% of its weight...
to 67% uranium-235
Uranium-235
- References :* .* DOE Fundamentals handbook: Nuclear Physics and Reactor theory , .* A piece of U-235 the size of a grain of rice can produce energy equal to that contained in three tons of coal or fourteen barrels of oil. -External links:* * * one of the earliest articles on U-235 for the...
when fresh, the concentration dropped to approximately 65% upon removal. The rods also contained 10% zirconium
Zirconium
Zirconium is a chemical element with the symbol Zr and atomic number 40. The name of zirconium is taken from the mineral zircon. Its atomic mass is 91.224. It is a lustrous, grey-white, strong transition metal that resembles titanium...
. Each fuel element is placed inside a thin-walled stainless steel
Stainless steel
In metallurgy, stainless steel, also known as inox steel or inox from French "inoxydable", is defined as a steel alloy with a minimum of 10.5 or 11% chromium content by mass....
tube along with a small amount of sodium
Sodium
Sodium is a chemical element with the symbol Na and atomic number 11. It is a soft, silvery-white, highly reactive metal and is a member of the alkali metals; its only stable isotope is 23Na. It is an abundant element that exists in numerous minerals, most commonly as sodium chloride...
metal. The tube is welded shut at the top to form a unit 29 inches (73 cm) long. The purpose of the sodium is to function as a heat-transfer agent. As more and more of the uranium undergoes fission, it develops fissures and the sodium enters the voids. It extracts an important fission product, caesium
Caesium
Caesium or cesium is the chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-gold alkali metal with a melting point of 28 °C , which makes it one of only five elemental metals that are liquid at room temperature...
-137, and hence becomes intensely radioactive. The void above the uranium collects fission gases, mainly krypton
Krypton
Krypton is a chemical element with the symbol Kr and atomic number 36. It is a member of Group 18 and Period 4 elements. A colorless, odorless, tasteless noble gas, krypton occurs in trace amounts in the atmosphere, is isolated by fractionally distilling liquified air, and is often used with other...
-85. Clusters of the pins inside hexagonal stainless steel jackets 92 inches ( 234 cm ) long are assembled honeycomb-like; each unit has about 10 pounds (4.5 kg ) of uranium. All together, the core contains about 680 pounds (308 kg ) of uranium fuel, and this part is called the driver.
The EBR-II core can accommodate as many as 65 experimental sub-assemblies for irradiation and operational reliability tests, fueled with a variety of metallic and ceramic fuels—the oxide
Oxide
An oxide is a chemical compound that contains at least one oxygen atom in its chemical formula. Metal oxides typically contain an anion of oxygen in the oxidation state of −2....
s, carbide
Carbide
In chemistry, a carbide is a compound composed of carbon and a less electronegative element. Carbides can be generally classified by chemical bonding type as follows: salt-like, covalent compounds, interstitial compounds, and "intermediate" transition metal carbides...
s, or nitride
Nitride
In chemistry, a nitride is a compound of nitrogen where nitrogen has a formal oxidation state of −3. Nitrides are a large class of compounds with a wide range of properties and applications....
s of uranium and plutonium
Plutonium
Plutonium is a transuranic radioactive chemical element with the chemical symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, forming a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation...
, and metallic fuel alloys such as uranium-plutonium-zirconium fuel. Other sub-assembly positions may contain structural-material experiments.
Passive safety
The pool-type reactor design of the EBR-II provides passive safety: the reactor core, its fuel handling equipment, and many other systems of the reactor are submerged under molten sodium. By providing a fuel which readily conducts heat from the fuel to the coolant, and which operates at relatively low temperatures, the EBR-II takes maximum advantage of expansion of the coolant, fuel, and structure during off-normal events which increase temperatures. The expansion of the fuel and structure in an off-normal situation causes the system to shut down even without human operator intervention. In April 1986, two special tests were performed on the EBR-II, in which the main primary cooling pumps were shut off with the reactor at full power (62.5 megawatts, thermal). By not allowing the normal shutdown systems to interfere, the reactor power dropped to near zero within about 300 seconds. No damage to the fuel or the reactor resulted. This test demonstrated that even with a loss of all electrical power and the capability to shut down the reactor using the normal systems, the reactor will simply shut down without danger or damage. The same day, this demonstration was followed by another important test. With the reactor again at full power, flow in the secondary cooling system was stopped. This test caused the temperature to increase, since there was nowhere for the reactor heat to go. As the primary (reactor) cooling system became hotter, the fuel, sodium coolant, and structure expanded, and the reactor shut down. This test showed that it will shut down using inherent features such as thermal expansion, even if the ability to remove heat from the primary cooling system is lost.EBR-II is now defueled. The EBR-II shutdown activity also includes the treatment of its discharged spent fuel using an electrometallurgical fuel treatment process in the Fuel Conditioning Facility located next to the EBR-II.
The clean-up process for EBR-II includes the removal and processing of the sodium coolant, cleaning of the EBR-II sodium systems, removal and passivating of other chemical hazards and placing the deactivated components and structure in a safe condition.
Related facilities
The objective of the EBR-II was to demonstrate the operation of a sodium-cooled fast reactorSodium-cooled fast reactor
The sodium-cooled fast reactor or SFR is a Generation IV reactor project to design an advanced fast neutron reactor.It builds on two closely related existing projects, the LMFBR and the Integral Fast Reactor, with the objective of producing a fast-spectrum, sodium-cooled reactor.The reactors are...
power plant with on-site reprocessing of metallic fuel. In order to meet this objective of on-site reprocessing, the EBR-II was part of a wider complex of facilities, consisting of
- Fuel Conditioning Facility: facility for reprocessing and treating spent fuel from the EBR-II and other reactors, using an electrorefiner for electrometallurgical treatment of spent fuel
- Fuel Manufacturing Facility: facility for the manufacturing of metallic fuel elements
- Hot Fuels Examination Facility: a "hot-cell" complex for handling and examining highly radioactive materials remotely
- Sodium Processing Facility: facility for processing of reactive sodium into low-level waste
Integral Fast Reactor
The EBR-II has served as prototype of the Integral Fast ReactorIntegral Fast Reactor
The Integral Fast Reactor is a design for a nuclear reactor using fast neutrons and no neutron moderator . IFR is distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.The U.S...
(IFR), which was the intended successor to the EBR-II. The IFR program was started in 1983, but funding was withdrawn by U.S. Congress
United States Congress
The United States Congress is the bicameral legislature of the federal government of the United States, consisting of the Senate and the House of Representatives. The Congress meets in the United States Capitol in Washington, D.C....
in 1994, three years before the intended completion of the program. The Nuclear Energy division of General Electric
General Electric
General Electric Company , or GE, is an American multinational conglomerate corporation incorporated in Schenectady, New York and headquartered in Fairfield, Connecticut, United States...
, which was involved in the development of the IFR, has presented a design for a commercial version of the IFR: the S-PRISM
S-PRISM
S-PRISM, also called PRISM , is the name of a nuclear power plant design by GE Hitachi Nuclear Energy based on a sodium-cooled fast breeder reactor. The design utilizes reactor modules, each having a power output of 311 MWe, to enable factory fabrication at low cost. The design is based on the...
reactor.
External links
- EBR-II at Argonne National Laboratory (archived copy at the Internet archiveInternet ArchiveThe Internet Archive is a non-profit digital library with the stated mission of "universal access to all knowledge". It offers permanent storage and access to collections of digitized materials, including websites, music, moving images, and nearly 3 million public domain books. The Internet Archive...
). - Experimental Breeder Reactor-II (21 MB) Leonard J. Koch