Free body diagram
Encyclopedia
A free body diagram, also called a force diagram, is a pictorial representation often used by physicists and engineers to analyze the forces acting on a body of interest
Free body
Free body is the generic term used by physicists and engineers to describe an object—be it a bowling ball, a spacecraft, pendulum, a television, or anything else—which can be considered as moving as a single unit. The object doesn't have to be "free" in the usual sense of the...

. A free body diagram shows all force
Force
In physics, a force is any influence that causes an object to undergo a change in speed, a change in direction, or a change in shape. In other words, a force is that which can cause an object with mass to change its velocity , i.e., to accelerate, or which can cause a flexible object to deform...

s of all types acting on this body. Drawing such a diagram can aid in solving for the unknown forces or the equations of motion
Equation of motion
Equations of motion are equations that describe the behavior of a system in terms of its motion as a function of time...

 of the body. Creating a free body diagram can make it easier to understand the forces, and torques or moments
Torque
Torque, moment or moment of force , is the tendency of a force to rotate an object about an axis, fulcrum, or pivot. Just as a force is a push or a pull, a torque can be thought of as a twist....

, in relation to one another and suggest the proper concepts to apply in order to find the solution to a problem. The diagrams are also used as a conceptual device to help identify the internal forces—for example, shear forces and bending moments in beams—which are developed within structures.

Construction

A free body diagram consists primarily of a sketch of the body in question and arrows representing the forces applied to it. The selection of the body to sketch may be the first important decision in the problem solving process. For example, to find the forces on the pivot joint of a simple pair of pliers
Pliers
Pliers are a hand tool used to hold objects firmly, for bending, or physical compression. Generally, pliers consist of a pair of metal first-class levers joined at a fulcrum positioned closer to one end of the levers, creating short jaws on one side of the fulcrum, and longer handles on the other...

, it is helpful to draw a free body diagram of just one of the two pieces, not the entire system, replacing the second half with the forces it would apply to the first half.

What is included

The sketch of the free body need to include only as much detail as necessary. Often a simple outline is sufficient. Depending on the analysis to be performed and the model being employed, just a single point may be the most appropriate. If rotation
Rotation
A rotation is a circular movement of an object around a center of rotation. A three-dimensional object rotates always around an imaginary line called a rotation axis. If the axis is within the body, and passes through its center of mass the body is said to rotate upon itself, or spin. A rotation...

 of the body and torque
Torque
Torque, moment or moment of force , is the tendency of a force to rotate an object about an axis, fulcrum, or pivot. Just as a force is a push or a pull, a torque can be thought of as a twist....

 is in consideration, it is best to draw the shape. Free body diagrams are named as such because the diagram isolates the body, hence free, from all other interacting bodies, and the diagram focuses on one specific body. Neighboring free body diagrams in the same big picture may be necessary in order to consider the other interacting bodies of the situation.

All external contacts, constraints, and body forces are indicated by vector arrows labeled with appropriate descriptions. The arrows show the direction and magnitude
Magnitude (mathematics)
The magnitude of an object in mathematics is its size: a property by which it can be compared as larger or smaller than other objects of the same kind; in technical terms, an ordering of the class of objects to which it belongs....

 of the various forces. To the extent possible or practical, the arrows should indicate the point of application of the force they represent.

Only the forces acting on the object are included. These may include forces such as friction
Friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and/or material elements sliding against each other. There are several types of friction:...

, gravity
Gravitation
Gravitation, or gravity, is a natural phenomenon by which physical bodies attract with a force proportional to their mass. Gravitation is most familiar as the agent that gives weight to objects with mass and causes them to fall to the ground when dropped...

, normal force
Normal force
In mechanics, the normal force F_n\ is the component, perpendicular to the surface of contact, of the contact force exerted on an object by, for example, the surface of a floor or wall, preventing the object from penetrating the surface.The normal force is one of the components of the ground...

, drag
Drag (physics)
In fluid dynamics, drag refers to forces which act on a solid object in the direction of the relative fluid flow velocity...

, tension, or a human force
Muscle
Muscle is a contractile tissue of animals and is derived from the mesodermal layer of embryonic germ cells. Muscle cells contain contractile filaments that move past each other and change the size of the cell. They are classified as skeletal, cardiac, or smooth muscles. Their function is to...

 due to pushing or pulling. When in a non-inertial reference frame
Non-inertial reference frame
A non-inertial reference frame is a frame of reference that is under acceleration. The laws of physics in such a frame do not take on their most simple form, as required by the theory of special relativity...

, fictitious force
Fictitious force
A fictitious force, also called a pseudo force, d'Alembert force or inertial force, is an apparent force that acts on all masses in a non-inertial frame of reference, such as a rotating reference frame....

s, such as centrifugal pseudoforce may be appropriate.

A coordinate system
Coordinate system
In geometry, a coordinate system is a system which uses one or more numbers, or coordinates, to uniquely determine the position of a point or other geometric element. The order of the coordinates is significant and they are sometimes identified by their position in an ordered tuple and sometimes by...

 is usually included, according to convenience. This may make defining the vectors simpler when writing the equations of motion. The x direction might be chosen to point down the ramp in an inclined plane
Inclined plane
The inclined plane is one of the original six simple machines; as the name suggests, it is a flat surface whose endpoints are at different heights. By moving an object up an inclined plane rather than completely vertical, the amount of force required is reduced, at the expense of increasing the...

 problem, for example. In that case the friction force only has an x component, and the normal force only has a y component. The force of gravity will still have components in both the x and y direction: mgsin(θ) in the x and mgcos(θ) in the y, where θ is the angle between the ramp and the horizontal.

What is excluded

All external contacts and constraints are left out and replaced with force arrows as described above.

Forces which the free body applies to other objects are not included. For example, if a ball rests on a table, the ball applies a force to the table, and the table applies an equal and opposite force to the ball. The FBD of the ball only includes the force that the table causes on the ball.

Internal forces, forces between various parts that make up the system that is being treated as a single body, are omitted. For example, if an entire truss
Truss
In architecture and structural engineering, a truss is a structure comprising one or more triangular units constructed with straight members whose ends are connected at joints referred to as nodes. External forces and reactions to those forces are considered to act only at the nodes and result in...

 is being analyzed to find the reaction forces at the supports, the forces between the individual truss members are not included.

Any velocity or acceleration is left out. These may be indicated instead on a companion diagram, called "Kinetic diagrams", "Inertial response diagrams", or the equivalent, depending on the author.

Assumptions

The free body diagram reflects the assumption and simplifications made in order to analyze the system. If the body in question is a satellite in orbit for example, and all that is required is to find its velocity, then a single point may be the best representation. On the other hand, the brake dive of a motorcycle cannot be found from a single point, and a sketch with finite dimensions is required.

Force vectors must be carefully located and labeled to avoid assumptions that presuppose a result. For example, in the accompanying diagram of a block on a ramp, the exact location of the resulting normal force of the ramp on the block can only be found after analyzing the motion or by assuming equilibrium.

Other simplifying assumptions that may be considered include two-force members and three-force members.

Example

A simple free body diagram, shown above, of a block on a ramp illustrates this.
  • All external supports and structures have been replaced by the forces they generate. These include:
  • mg: the product of the mass of the block and the constant of gravitation acceleration: its weight.
  • N: the normal force of the ramp.
  • Ff: the friction force of the ramp.
  • The force vectors show direction and point of application and are labeled with their magnitude.
  • It contains a coordinate system that can be used when describing the vectors.

See also

  • Classical Mechanics
    Classical mechanics
    In physics, classical mechanics is one of the two major sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the action of a system of forces...

  • Force field analysis
    Force field analysis
    Force field analysis is an influential development in the field of social science. It provides a framework for looking at the factors that influence a situation, originally social situations. It looks at forces that are either driving movement toward a goal or blocking movement toward a goal...

     – applications of force diagram in social science
  • Shear and moment diagrams
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK