History of model organisms
Encyclopedia
The history of model organisms began with the idea that certain organisms can be studied and used to gain knowledge of other organisms or as a control (ideal) for other organisms of the same species. Model organism
s offer standards that serve as the authorized basis for comparison of other organisms. Model organisms are made standard by limiting genetic variance
, creating, hopefully, this broad applicability to other organisms.
The idea of the model organism first took roots in the middle of the 19th century with the work of men like Charles Darwin
and Gregor Mendel
and their respective work on natural selection and the genetics of heredity. These early works in finding standards to compare organisms against continued into the 20th century as the first model organisms were brought into laboratories. Beginning in the early 1900s Drosophila
entered the research laboratories and opened up the doors for other model organisms like Tobacco mosaic virus
, E. coli, C57BL/6 (lab mice), etc. These organisms have led to many advances in the past century.
were insufficient in describing the formation of a new species
and he began his work with the pea
plants that are so famously known today. In his experimentation to find a method by which Darwin’s ideas could be explained he hybridized and cross-bred
the peas and found that in so doing he could isolate phenotypic
characteristics of the peas. These discoveries made in the 1860s lay dormant for nearly forty years until they were rediscovered in 1900. Mendel’s work was then correlated with what was being called chromosome
s within the nucleus
of each cell. Mendel created a practical guide to breeding and this method has successfully been applied to select for some of the first model organisms of other genus and species such as Guinea pig
s, Drosophila
(fruit fly), mice, and viruses like the tobacco mosaic virus
.
made the jump from nature to laboratory animal in 1901. At Harvard University, Charles W. Woodworth
suggested to William E. Castle
that Drosophila might be used for genetical work. Castle, along with his students, then first brought the fly into their labs for experimental use. By 1903 William J. Moenkhaus had brought Drosophila back to his lab at Indiana University Med School. Moenkhaus in turn convinced entomologist Frank E. Lutz that it would be a good organism for the work he was doing at Carnegie Institution’s Station for Experimental Evolution at Cold Springs Harbor, Long Island on experimental evolution. Sometime in the year 1906 Drosophila was adopted by the man who would become very well known for his work with the flies, Thomas Hunt Morgan
. A man by the name of Jacques Loeb also tried experimentation in mutations of Drosophila independently of Morgan’s work during the 1st decade of the twentieth century.
Thomas Hunt Morgan is considered to be one of the most influential men in experimental biology during the early twentieth century and his work with the Drosophila was extensive. He was one of the first in the field to realize the potential of mapping the chromosomes of Drosophila melanogaster and all known mutants. He would later expand his findings to a comparative study of other species. With careful and painstaking observation he and other "Drosophilists" were able to control for mutations and cross breed for new phenotypes. Through many years of work like this standards of these flies have become quite uniform and are still used in research today.
These flies, along with all the original model organisms, were not domesticated, but had adapted to the domesticity of humankind. The flies had to cross the threshold of nature to become creatures of a second, more experimental character. Not just flies, but other organisms were also being brought into the laboratories during the early 1900s and tried out as experimental creatures.
With the expansion of animals used as test subjects in laboratories came more knowledge of what each model organism was best suited for testing. Limitations of these animals’ testing abilities were also discovered so the introduction of even more model organisms began as science progressed.
Drosophila exist today as one of the more advanced forms of insects on the planet due to the their rapid evolution and frequency of gene change over the past 300 million years. Although they have many desirable attributes as model organisms, these flies have trouble dealing with some experimental bacteria that should not be pathogens. These tend to cause a high rate of mortality. Also these flies have diverged greatly in their genetic make up from other insects, thus making comparisons sometimes difficult. The apparent need for new organisms grew and beetles were brought into the picture. A commonly used beetle in today’s laboratories is Tribolium, which has retained much of its ancestral DNA thus allowing for more experimentation and different comparisons.
, a whole new field of microbiology was born. This invention allowed microbiologists to see objects that were far too small to be seen by any light microscope and thus viruses which had perplexed biologists of many fields for years, now came under scientific scrutiny. In 1932 Wendell Stanley began a direct competition with Carl G. Vinson to be the first to completely isolate the Tobacco Mosaic Virus, a virus that had been until then invisibly killing tobacco plants across England. It was Stanley who would accomplish this task first by changing the pH to one a more acidic one. In doing so he was able to conclude that the virus was either a protein or closely related to one, thus benefiting experimental research.
There are very important reasons why these new, much smaller organisms such as the Tobacco Mosaic Virus and E. coli made their way into the molecular biologists’ laboratories. Organisms like Drosophila and Tribolium were much too large and too complex for the simple quantitative experiments that men like Wendell Stanley wanted to perform. Before the use of these simple organisms molecular biologist had comparatively complex organisms to work with.
Today these viruses, including bacteriophages, are used extensively in genetics. They are critical in helping researchers to produce DNA within bacteria. The Tobacco Mosaic Virus has DNA that stacks itself in a distinctive way that was influential in Watson and Cricks development of their model of the helical structure for DNA.
The mice turned out to be an almost perfect solution for test subjects for mammalian genetic research. The fact that they had been bred by ‘rat fanciers’ for hundreds of years allowed for diverse populations of an animal while the public held far less sentiment for these rodents than they did for dogs and cats. Because of social allowance, Little was able to take new ideas of ‘pure genetic strains’ merging from plant genetics as well as work with Drosophila and run with them. The idea of inbreeding to achieve this goal of a ‘pure strain’ in mice was one that may have created a negative response to the fertility of the mice thus discontinuing the strain. Little achieved his goal of a genetically pure strain of mice by 1911 and published his finding shortly thereafter.
He would continue his work with these mice and used his research to demonstrate that inbreeding is an effective way of eliminate variation and served to preserve unique genetic variants. Around this time as well there was much work being done with these mice and cancer and tumor research.
Throughout the 1920s’ work continued with these mice as model organisms for research into tumors and genetics. It was during the great depression that this field of study would take its biggest blow. With the economy at rock bottom labs were forced into selling many of their mice just to keep from shutting down. This necessity for funds all but stopped the continuation of these strains of mice. The transition for these laboratories to exporters of massive quantities of mice was one that was rather easily made if there were adequate facilities for their production on site. Eventually in the mid 1930’s the market would return and genetics laboratories around the country resumed regular funding and thus continued in the areas of research they had started before the depression. As research into continued, so did the production of mice in places like Jackson Laboratory. Facilities like these were able to produce mice for research facilities around the world. These mice were bred with Mendelian breeding technique of which Little had implemented as standard practice around 1911. This meant that the mice being experimented on were not only the same within the laboratory, but in different laboratories around the world.
When James Watson
and Francis Crick
proved the structure of DNA in 1953 new doors opened up for what research could be done in work with genetics. In the case of research on mice this led to a half century long project of mapping the genome which was finally complete in 2002. Not only were the genomes of mice mapped but other organisms as well. With the knowledge came the ability for geneticists and molecular biologists to compare the actually DNA sequences within different organisms. Study of these comparisons allow researchers to determine which studies of model organisms can best be assimilated with other organisms that for practicality reasons are hard to complete research on. Organisms with low quantities of ‘junk’ DNA are usually the prefer medium for experimentation.
Model organism
A model organism is a non-human species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in the organism model will provide insight into the workings of other organisms. Model organisms are in vivo models and are widely used to...
s offer standards that serve as the authorized basis for comparison of other organisms. Model organisms are made standard by limiting genetic variance
Genetic variation
Genetic variation, variation in alleles of genes, occurs both within and among populations. Genetic variation is important because it provides the “raw material” for natural selection. Genetic variation is brought about by mutation, a change in a chemical structure of a gene. Polyploidy is an...
, creating, hopefully, this broad applicability to other organisms.
The idea of the model organism first took roots in the middle of the 19th century with the work of men like Charles Darwin
Charles Darwin
Charles Robert Darwin FRS was an English naturalist. He established that all species of life have descended over time from common ancestry, and proposed the scientific theory that this branching pattern of evolution resulted from a process that he called natural selection.He published his theory...
and Gregor Mendel
Gregor Mendel
Gregor Johann Mendel was an Austrian scientist and Augustinian friar who gained posthumous fame as the founder of the new science of genetics. Mendel demonstrated that the inheritance of certain traits in pea plants follows particular patterns, now referred to as the laws of Mendelian inheritance...
and their respective work on natural selection and the genetics of heredity. These early works in finding standards to compare organisms against continued into the 20th century as the first model organisms were brought into laboratories. Beginning in the early 1900s Drosophila
Drosophila
Drosophila is a genus of small flies, belonging to the family Drosophilidae, whose members are often called "fruit flies" or more appropriately pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many species to linger around overripe or rotting fruit...
entered the research laboratories and opened up the doors for other model organisms like Tobacco mosaic virus
Tobacco mosaic virus
Tobacco mosaic virus is a positive-sense single stranded RNA virus that infects plants, especially tobacco and other members of the family Solanaceae. The infection causes characteristic patterns on the leaves . TMV was the first virus to be discovered...
, E. coli, C57BL/6 (lab mice), etc. These organisms have led to many advances in the past century.
Preliminary works on model organisms
Some of the first work with what would be considered model organisms started because Gregor Johann Mendel felt that the views of DarwinCharles Darwin
Charles Robert Darwin FRS was an English naturalist. He established that all species of life have descended over time from common ancestry, and proposed the scientific theory that this branching pattern of evolution resulted from a process that he called natural selection.He published his theory...
were insufficient in describing the formation of a new species
Species
In biology, a species is one of the basic units of biological classification and a taxonomic rank. A species is often defined as a group of organisms capable of interbreeding and producing fertile offspring. While in many cases this definition is adequate, more precise or differing measures are...
and he began his work with the pea
Pea
A pea is most commonly the small spherical seed or the seed-pod of the pod fruit Pisum sativum. Each pod contains several peas. Peapods are botanically a fruit, since they contain seeds developed from the ovary of a flower. However, peas are considered to be a vegetable in cooking...
plants that are so famously known today. In his experimentation to find a method by which Darwin’s ideas could be explained he hybridized and cross-bred
Crossbreed
A crossbreed or crossbred usually refers to an animal with purebred parents of two different breeds, varieties, or populations. Crossbreeding refers to the process of breeding such an animal, often with the intention to create offspring that share the traits of both parent lineages, or producing...
the peas and found that in so doing he could isolate phenotypic
Phenotype
A phenotype is an organism's observable characteristics or traits: such as its morphology, development, biochemical or physiological properties, behavior, and products of behavior...
characteristics of the peas. These discoveries made in the 1860s lay dormant for nearly forty years until they were rediscovered in 1900. Mendel’s work was then correlated with what was being called chromosome
Chromosome
A chromosome is an organized structure of DNA and protein found in cells. It is a single piece of coiled DNA containing many genes, regulatory elements and other nucleotide sequences. Chromosomes also contain DNA-bound proteins, which serve to package the DNA and control its functions.Chromosomes...
s within the nucleus
Cell nucleus
In cell biology, the nucleus is a membrane-enclosed organelle found in eukaryotic cells. It contains most of the cell's genetic material, organized as multiple long linear DNA molecules in complex with a large variety of proteins, such as histones, to form chromosomes. The genes within these...
of each cell. Mendel created a practical guide to breeding and this method has successfully been applied to select for some of the first model organisms of other genus and species such as Guinea pig
Guinea pig
The guinea pig , also called the cavy, is a species of rodent belonging to the family Caviidae and the genus Cavia. Despite their common name, these animals are not in the pig family, nor are they from Guinea...
s, Drosophila
Drosophila
Drosophila is a genus of small flies, belonging to the family Drosophilidae, whose members are often called "fruit flies" or more appropriately pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many species to linger around overripe or rotting fruit...
(fruit fly), mice, and viruses like the tobacco mosaic virus
Tobacco mosaic virus
Tobacco mosaic virus is a positive-sense single stranded RNA virus that infects plants, especially tobacco and other members of the family Solanaceae. The infection causes characteristic patterns on the leaves . TMV was the first virus to be discovered...
.
Drosophila
The fruit fly Drosophila melanogasterDrosophila melanogaster
Drosophila melanogaster is a species of Diptera, or the order of flies, in the family Drosophilidae. The species is known generally as the common fruit fly or vinegar fly. Starting from Charles W...
made the jump from nature to laboratory animal in 1901. At Harvard University, Charles W. Woodworth
Charles W. Woodworth
Charles W. Woodworth was an American entomologist. He founded the Entomology Department at the University of California, Berkeley, and made many valuable contributions to entomology during his career....
suggested to William E. Castle
William E. Castle
William Ernest Castle was an early American geneticist.-Early years:William Ernest Castle was born on a farm in Ohio and took an early interest in natural history...
that Drosophila might be used for genetical work. Castle, along with his students, then first brought the fly into their labs for experimental use. By 1903 William J. Moenkhaus had brought Drosophila back to his lab at Indiana University Med School. Moenkhaus in turn convinced entomologist Frank E. Lutz that it would be a good organism for the work he was doing at Carnegie Institution’s Station for Experimental Evolution at Cold Springs Harbor, Long Island on experimental evolution. Sometime in the year 1906 Drosophila was adopted by the man who would become very well known for his work with the flies, Thomas Hunt Morgan
Thomas Hunt Morgan
Thomas Hunt Morgan was an American evolutionary biologist, geneticist and embryologist and science author who won the Nobel Prize in Physiology or Medicine in 1933 for discoveries relating the role the chromosome plays in heredity.Morgan received his PhD from Johns Hopkins University in zoology...
. A man by the name of Jacques Loeb also tried experimentation in mutations of Drosophila independently of Morgan’s work during the 1st decade of the twentieth century.
Thomas Hunt Morgan is considered to be one of the most influential men in experimental biology during the early twentieth century and his work with the Drosophila was extensive. He was one of the first in the field to realize the potential of mapping the chromosomes of Drosophila melanogaster and all known mutants. He would later expand his findings to a comparative study of other species. With careful and painstaking observation he and other "Drosophilists" were able to control for mutations and cross breed for new phenotypes. Through many years of work like this standards of these flies have become quite uniform and are still used in research today.
These flies, along with all the original model organisms, were not domesticated, but had adapted to the domesticity of humankind. The flies had to cross the threshold of nature to become creatures of a second, more experimental character. Not just flies, but other organisms were also being brought into the laboratories during the early 1900s and tried out as experimental creatures.
With the expansion of animals used as test subjects in laboratories came more knowledge of what each model organism was best suited for testing. Limitations of these animals’ testing abilities were also discovered so the introduction of even more model organisms began as science progressed.
Drosophila exist today as one of the more advanced forms of insects on the planet due to the their rapid evolution and frequency of gene change over the past 300 million years. Although they have many desirable attributes as model organisms, these flies have trouble dealing with some experimental bacteria that should not be pathogens. These tend to cause a high rate of mortality. Also these flies have diverged greatly in their genetic make up from other insects, thus making comparisons sometimes difficult. The apparent need for new organisms grew and beetles were brought into the picture. A commonly used beetle in today’s laboratories is Tribolium, which has retained much of its ancestral DNA thus allowing for more experimentation and different comparisons.
Microorganisms
Insects were not the only organisms entering the laboratories as test subjects. Bacteria had also been introduced and with the invention of the electron microscope in 1931 by Ernst RuskaErnst Ruska
Ernst August Friedrich Ruska was a German physicist who won the Nobel Prize in Physics in 1986 for his work in electron optics, including the design of the first electron microscope.Ruska was born in Heidelberg...
, a whole new field of microbiology was born. This invention allowed microbiologists to see objects that were far too small to be seen by any light microscope and thus viruses which had perplexed biologists of many fields for years, now came under scientific scrutiny. In 1932 Wendell Stanley began a direct competition with Carl G. Vinson to be the first to completely isolate the Tobacco Mosaic Virus, a virus that had been until then invisibly killing tobacco plants across England. It was Stanley who would accomplish this task first by changing the pH to one a more acidic one. In doing so he was able to conclude that the virus was either a protein or closely related to one, thus benefiting experimental research.
There are very important reasons why these new, much smaller organisms such as the Tobacco Mosaic Virus and E. coli made their way into the molecular biologists’ laboratories. Organisms like Drosophila and Tribolium were much too large and too complex for the simple quantitative experiments that men like Wendell Stanley wanted to perform. Before the use of these simple organisms molecular biologist had comparatively complex organisms to work with.
Today these viruses, including bacteriophages, are used extensively in genetics. They are critical in helping researchers to produce DNA within bacteria. The Tobacco Mosaic Virus has DNA that stacks itself in a distinctive way that was influential in Watson and Cricks development of their model of the helical structure for DNA.
Mice
Both the community of insects and the viruses were a good start to the history of model organisms, but there are yet still more players involved. At the turn of the century much biomedical research was being done using animals and especially mammalian bodies to further biologists’ understanding of life processes. It was around this time that American humane societies became very involved with preserving the rights of animal and for the first time were beginning to gain public support for this endeavor. At this same time American biology was also going through its own internal reforms. From 1900 to 1910 thirty medical schools were forced to close. During this time of unrest a man named Clarence Cook Little, through a series of luckily timed events, became a researcher at Harvard Medical School and worked on mouse cancers. He began developing large, mutant strain, colonies of mice. Under the charge of Dr. William Castle, Little helped to expand the animal breeding habits in the Bussey laboratory at Harvard. Due to freedom in the way Castle was allowed to run the laboratory and his financial backing by the University they were able to create an extensive program in mammalian genetics.The mice turned out to be an almost perfect solution for test subjects for mammalian genetic research. The fact that they had been bred by ‘rat fanciers’ for hundreds of years allowed for diverse populations of an animal while the public held far less sentiment for these rodents than they did for dogs and cats. Because of social allowance, Little was able to take new ideas of ‘pure genetic strains’ merging from plant genetics as well as work with Drosophila and run with them. The idea of inbreeding to achieve this goal of a ‘pure strain’ in mice was one that may have created a negative response to the fertility of the mice thus discontinuing the strain. Little achieved his goal of a genetically pure strain of mice by 1911 and published his finding shortly thereafter.
He would continue his work with these mice and used his research to demonstrate that inbreeding is an effective way of eliminate variation and served to preserve unique genetic variants. Around this time as well there was much work being done with these mice and cancer and tumor research.
Throughout the 1920s’ work continued with these mice as model organisms for research into tumors and genetics. It was during the great depression that this field of study would take its biggest blow. With the economy at rock bottom labs were forced into selling many of their mice just to keep from shutting down. This necessity for funds all but stopped the continuation of these strains of mice. The transition for these laboratories to exporters of massive quantities of mice was one that was rather easily made if there were adequate facilities for their production on site. Eventually in the mid 1930’s the market would return and genetics laboratories around the country resumed regular funding and thus continued in the areas of research they had started before the depression. As research into continued, so did the production of mice in places like Jackson Laboratory. Facilities like these were able to produce mice for research facilities around the world. These mice were bred with Mendelian breeding technique of which Little had implemented as standard practice around 1911. This meant that the mice being experimented on were not only the same within the laboratory, but in different laboratories around the world.
When James Watson
James D. Watson
James Dewey Watson is an American molecular biologist, geneticist, and zoologist, best known as one of the co-discoverers of the structure of DNA in 1953 with Francis Crick...
and Francis Crick
Francis Crick
Francis Harry Compton Crick OM FRS was an English molecular biologist, biophysicist, and neuroscientist, and most noted for being one of two co-discoverers of the structure of the DNA molecule in 1953, together with James D. Watson...
proved the structure of DNA in 1953 new doors opened up for what research could be done in work with genetics. In the case of research on mice this led to a half century long project of mapping the genome which was finally complete in 2002. Not only were the genomes of mice mapped but other organisms as well. With the knowledge came the ability for geneticists and molecular biologists to compare the actually DNA sequences within different organisms. Study of these comparisons allow researchers to determine which studies of model organisms can best be assimilated with other organisms that for practicality reasons are hard to complete research on. Organisms with low quantities of ‘junk’ DNA are usually the prefer medium for experimentation.
External links
- http://www.ncbi.nlm.nih.gov/About/model/