Isotopes of polonium
Encyclopedia
Polonium
Polonium
Polonium is a chemical element with the symbol Po and atomic number 84, discovered in 1898 by Marie Skłodowska-Curie and Pierre Curie. A rare and highly radioactive element, polonium is chemically similar to bismuth and tellurium, and it occurs in uranium ores. Polonium has been studied for...

(Po) has 42 isotopes, all of which are radioactive, with between 186 and 227 nucleons. 210Po with a half-life of 138.376 days has the longest half-life of naturally occurring polonium. 209Po with a half-life of 103 years has the longest half-life of all isotopes of polonium. 209Po and 208Po (half-life 2.9 years) can be made through the alpha, proton, or deuteron bombardment of lead
Lead
Lead is a main-group element in the carbon group with the symbol Pb and atomic number 82. Lead is a soft, malleable poor metal. It is also counted as one of the heavy metals. Metallic lead has a bluish-white color after being freshly cut, but it soon tarnishes to a dull grayish color when exposed...

 or bismuth
Bismuth
Bismuth is a chemical element with symbol Bi and atomic number 83. Bismuth, a trivalent poor metal, chemically resembles arsenic and antimony. Elemental bismuth may occur naturally uncombined, although its sulfide and oxide form important commercial ores. The free element is 86% as dense as lead...

 in a cyclotron
Cyclotron
In technology, a cyclotron is a type of particle accelerator. In physics, the cyclotron frequency or gyrofrequency is the frequency of a charged particle moving perpendicularly to the direction of a uniform magnetic field, i.e. a magnetic field of constant magnitude and direction...

.

210Po

210Po is an alpha emitter
Alpha decay
Alpha decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle and thereby transforms into an atom with a mass number 4 less and atomic number 2 less...

 that has a half-life of 138.376 days; it decays directly to its daughter isotope
Decay product
In nuclear physics, a decay product is the remaining nuclide left over from radioactive decay. Radioactive decay often involves a sequence of steps...

 206Pb. A milligram of 210Po emits as many alpha particles per second as 4.215 grams of 226Ra. A few curie
Curie
The curie is a unit of radioactivity, defined asThis is roughly the activity of 1 gram of the radium isotope 226Ra, a substance studied by the pioneers of radiology, Marie and Pierre Curie, for whom the unit was named. In addition to the curie, activity can be measured using an SI derived unit,...

s (1 curie equals 37 gigabecquerels
Becquerel
The becquerel is the SI-derived unit of radioactivity. One Bq is defined as the activity of a quantity of radioactive material in which one nucleus decays per second. The Bq unit is therefore equivalent to an inverse second, s−1...

) of 210Po emit a blue glow which is caused by excitation
Excited state
Excitation is an elevation in energy level above an arbitrary baseline energy state. In physics there is a specific technical definition for energy level which is often associated with an atom being excited to an excited state....

 of surrounding air. A single gram of 210Po generates 140 watts of power. Because it emits many alpha particles, which are stopped within a very short distance in dense media and release their energy, 210Po has been used as a lightweight heat source to power thermoelectric cells
Radioisotope thermoelectric generator
A radioisotope thermoelectric generator is an electrical generator that obtains its power from radioactive decay. In such a device, the heat released by the decay of a suitable radioactive material is converted into electricity by the Seebeck effect using an array of thermocouples.RTGs can be...

 in artificial satellites; for instance, 210Po heat source was also used in each of the Lunokhod rovers deployed on the surface of the Moon
Moon
The Moon is Earth's only known natural satellite,There are a number of near-Earth asteroids including 3753 Cruithne that are co-orbital with Earth: their orbits bring them close to Earth for periods of time but then alter in the long term . These are quasi-satellites and not true moons. For more...

, to keep their internal components warm during the lunar nights. Some anti-static brushes contain up to 500 microcuries of 210Po as a source of charged particles for neutralizing static electricity in materials like photographic film. 210Po was used to kill Russian dissident and ex-FSB officer Alexander V. Litvinenko
Alexander Litvinenko
Alexander Valterovich Litvinenko was an officer who served in the Soviet KGB and its Russian successor, the Federal Security Service ....

 in 2006.

The majority of the time 210Po decays by emission of an alpha particle
Alpha particle
Alpha particles consist of two protons and two neutrons bound together into a particle identical to a helium nucleus, which is classically produced in the process of alpha decay, but may be produced also in other ways and given the same name...

 only, not by emission of an alpha particle and a gamma ray
Gamma ray
Gamma radiation, also known as gamma rays or hyphenated as gamma-rays and denoted as γ, is electromagnetic radiation of high frequency . Gamma rays are usually naturally produced on Earth by decay of high energy states in atomic nuclei...

. About one in 100,000 decays results in the emission of a gamma ray. This low gamma ray production rate makes it more difficult to find and identify this isotope. Rather than gamma ray spectroscopy, alpha spectroscopy is the best method of measuring this isotope.

210Po occurs in minute amounts in nature, where it is an intermediate isotope in the radium series (also known as the uranium series) decay chain
Decay chain
In nuclear science, the decay chain refers to the radioactive decay of different discrete radioactive decay products as a chained series of transformations...

. It is generated via beta decay from 210Bi
Bismuth
Bismuth is a chemical element with symbol Bi and atomic number 83. Bismuth, a trivalent poor metal, chemically resembles arsenic and antimony. Elemental bismuth may occur naturally uncombined, although its sulfide and oxide form important commercial ores. The free element is 86% as dense as lead...

.

Table

nuclide
symbol
historic
name
Z(p
Proton
The proton is a subatomic particle with the symbol or and a positive electric charge of 1 elementary charge. One or more protons are present in the nucleus of each atom, along with neutrons. The number of protons in each atom is its atomic number....

)
N(n
Neutron
The neutron is a subatomic hadron particle which has the symbol or , no net electric charge and a mass slightly larger than that of a proton. With the exception of hydrogen, nuclei of atoms consist of protons and neutrons, which are therefore collectively referred to as nucleons. The number of...

)
 
isotopic mass (u)
 
half-life decay
mode(s)Abbreviations:
EC: Electron capture
Electron capture
Electron capture is a process in which a proton-rich nuclide absorbs an inner atomic electron and simultaneously emits a neutrino...


IT: Isomeric transition
Isomeric transition
An isomeric transition is a radioactive decay process that involves emission of a gamma ray from an atom where the nucleus is in an excited metastable state, referred to in its excited state, as a nuclear isomer....

daughter
isotope(s)Bold for stable isotopes, bold italics for nearly stable isotopes (half-life longer than the age of the universe
Age of the universe
The age of the universe is the time elapsed since the Big Bang posited by the most widely accepted scientific model of cosmology. The best current estimate of the age of the universe is 13.75 ± 0.13 billion years within the Lambda-CDM concordance model...

)
nuclear
spin
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
excitation energy
188Po 84 104 187.999422(21) 430(180) µs
[0.40(+20-15) ms]
0+
189Po 84 105 188.998481(24) 5(1) ms 3/2-#
190Po 84 106 189.995101(14) 2.46(5) ms α
Alpha decay
Alpha decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle and thereby transforms into an atom with a mass number 4 less and atomic number 2 less...

 (99.9%)
186Pb 0+
β+
Beta decay
In nuclear physics, beta decay is a type of radioactive decay in which a beta particle is emitted from an atom. There are two types of beta decay: beta minus and beta plus. In the case of beta decay that produces an electron emission, it is referred to as beta minus , while in the case of a...

 (.1%)
190Bi
191Po 84 107 190.994574(12) 22(1) ms α 187Pb 3/2-#
β+ (rare) 191Bi
191mPo 130(21) keV 93(3) ms (13/2+)
192Po 84 108 191.991335(13) 32.2(3) ms α (99%) 188Pb 0+
β+ (1%) 192Bi
192mPo 2600(500)# keV ~1 µs 12+#
193Po 84 109 192.99103(4) 420(40) ms
[370(+46-40) ms]
α 189Pb 3/2-#
β+ (rare) 193Bi
193mPo 100(30)# keV 240(10) ms
[243(+11-10) ms]
α 189Pb (13/2+)
β+ (rare) 193Bi
194Po 84 110 193.988186(13) 0.392(4) s α 190Pb 0+
β+ (rare) 194Bi
194mPo 2525(2) keV 15(2) µs (11-)
195Po 84 111 194.98811(4) 4.64(9) s α (75%) 191Pb 3/2-#
β+ (25%) 195Bi
195mPo 110(50) keV 1.92(2) s α (90%) 191Pb 13/2+#
β+ (10%) 195Bi
IT
Isomeric transition
An isomeric transition is a radioactive decay process that involves emission of a gamma ray from an atom where the nucleus is in an excited metastable state, referred to in its excited state, as a nuclear isomer....

 (.01%)
195Po
196Po 84 112 195.985535(14) 5.56(12) s α (94%) 192Pb 0+
β+ (6%) 196Bi
196mPo 2490.5(17) keV 850(90) ns (11-)
197Po 84 113 196.98566(5) 53.6(10) s β+ (54%) 197Bi (3/2-)
α (44%) 193Pb
197mPo 230(80)# keV 25.8(1) s α (84%) 193Pb (13/2+)
β+ (16%) 197Bi
IT (.01%) 197Po
198Po 84 114 197.983389(19) 1.77(3) min α (57%) 194Pb 0+
β+ (43%) 198Bi
198m1Po 2565.92(20) keV 200(20) ns 11-
198m2Po 2691.86(20) keV 750(50) ns 12+
199Po 84 115 198.983666(25) 5.48(16) min β+ (92.5%) 199Bi (3/2-)
α (7.5%) 195Pb
199mPo 312.0(28) keV 4.17(4) min β+ (73.5%) 199Bi 13/2+
α (24%) 195Pb
IT (2.5%) 199Po
200Po 84 116 199.981799(15) 11.5(1) min β+ (88.8%) 200Bi 0+
α (11.1%) 196Pb
201Po 84 117 200.982260(6) 15.3(2) min β+ (98.4%) 201Bi 3/2-
α (1.6%) 197Pb
201mPo 424.1(24) keV 8.9(2) min IT (56%) 201Po 13/2+
EC
Electron capture
Electron capture is a process in which a proton-rich nuclide absorbs an inner atomic electron and simultaneously emits a neutrino...

 (41%)
201Bi
α (2.9%) 197Pb
202Po 84 118 201.980758(16) 44.7(5) min β+ (98%) 202Bi 0+
α (2%) 198Pb
202mPo 2626.7(7) keV >200 ns 11-
203Po 84 119 202.981420(28) 36.7(5) min β+ (99.89%) 203Bi 5/2-
α (.11%) 199Pb
203m1Po 641.49(17) keV 45(2) s IT (99.96%) 203Po 13/2+
α (.04%) 199Pb
203m2Po 2158.5(6) keV >200 ns
204Po 84 120 203.980318(12) 3.53(2) h β+ (99.33%) 204Bi 0+
α (.66%) 200Pb
205Po 84 121 204.981203(21) 1.66(2) h β+ (99.96%) 205Bi 5/2-
α (.04%) 201Pb
205m1Po 143.166(17) keV 310(60) ns 1/2-
205m2Po 880.30(4) keV 645 µs 13/2+
205m3Po 1461.21(21) keV 57.4(9) ms IT 205Po 19/2-
205m4Po 3087.2(4) keV 115(10) ns 29/2-
206Po 84 122 205.980481(9) 8.8(1) d β+ (94.55%) 206Bi 0+
α (5.45%) 202Pb
206m1Po 1585.85(11) keV 222(10) ns (8+)#
206m2Po 2262.22(14) keV 1.05(6) µs (9-)#
207Po 84 123 206.981593(7) 5.80(2) h β+ (99.97%) 207Bi 5/2-
α (.021%) 203Pb
207m1Po 68.573(14) keV 205(10) ns 1/2-
207m2Po 1115.073(16) keV 49(4) µs 13/2+
207m3Po 1383.15(6) keV 2.79(8) s IT 207Po 19/2-
208Po 84 124 207.9812457(19) 2.898(2) a α (99.99%) 204Pb 0+
β+ (.00277%) 208Bi
209Po 84 125 208.9824304(20) 102(5) a α (99.52%) 205Pb 1/2-
β+ (.48%) 209Bi
210Po Radium F 84 126 209.9828737(13) 138.376(2) d α 206Pb 0+ TraceIntermediate decay product
Decay product
In nuclear physics, a decay product is the remaining nuclide left over from radioactive decay. Radioactive decay often involves a sequence of steps...

 of Uranium-238
Uranium-238
Uranium-238 is the most common isotope of uranium found in nature. It is not fissile, but is a fertile material: it can capture a slow neutron and after two beta decays become fissile plutonium-239...

210mPo 5057.61(4) keV 263(5) ns 16+
211Po Actinium C' 84 127 210.9866532(14) 0.516(3) s α 207Pb 9/2+ TraceIntermediate decay product of Uranium-235
Uranium-235
- References :* .* DOE Fundamentals handbook: Nuclear Physics and Reactor theory , .* A piece of U-235 the size of a grain of rice can produce energy equal to that contained in three tons of coal or fourteen barrels of oil. -External links:* * * one of the earliest articles on U-235 for the...

211m1Po 1462(5) keV 25.2(6) s α (99.98%) 207Pb (25/2+)
IT (.016%) 211Po
211m2Po 2135.7(9) keV 243(21) ns (31/2-)
211m3Po 4873.3(17) keV 2.8(7) µs (43/2+)
212Po Thorium C' 84 128 211.9888680(13) 299(2) ns α 208Pb 0+ TraceIntermediate decay product of Thorium-232
212mPo 2911(12) keV 45.1(6) s α (99.93%) 208Pb (18+)
IT (.07%) 212Po
213Po 84 129 212.992857(3) 3.65(4) µs α 209Pb 9/2+
214Po Radium C' 84 130 213.9952014(16) 164.3(20) µs α 210Pb 0+ Trace
215Po Actinium A 84 131 214.9994200(27) 1.781(4) ms α (99.99%) 211Pb 9/2+ Trace
β- (2.3×10−4%) 215At
216Po Thorium A 84 132 216.0019150(24) 0.145(2) s α 212Pb 0+ Trace
β-β- (rare) 216Rn
217Po 84 133 217.006335(7) 1.47(5) s α (95%) 213Pb 5/2+#
β- (5%) 217At
218Po Radium A 84 134 218.0089730(26) 3.10(1) min α (99.98%) 214Pb 0+ Trace
β- (.02%) 218At
219Po 84 135 219.01374(39)# 2# min
[>300 ns]
7/2+#
220Po 84 136 220.01660(39)# 40# s
[>300 ns]
0+


The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK