John Hall Gladstone
Encyclopedia
John Hall Gladstone FRS (7 March 1827 – 6 October 1902) was a British chemist
. He served as President of the Physical Society between 1874 and 1876 and during 1877–1879 was President of the Chemical Society
. Apart from chemistry, where one of his most notable publications was on bromination of rubber, he undertook pioneering work in optics and spectroscopy.
, London
and Alison Hall, as the eldest of three sons. The three brothers were educated entirely at home under tutors, and from very early days all showed a strong inclination toward natural science. In 1842 the father retired from business, and the family spent a year in travelling on the continent. Part of this time was passed in Italy with their old friends: Charles Tilt, his wife and their daughter May, who in 1852 became the wife of John Hall Gladstone.
From early years Gladstone had shown strong religious tendencies, and when, at the age of seventeen, the question of his future
career came to be discussed, he wished to enter the Christian ministry. From this course he was dissuaded both by his father and by Mr. Tilt, and in December 1844 he entered University College, London. Here he attended Graham’s
lectures on chemistry and worked in his private laboratory, and here he prepared his earliest scientific contribution on "Analysis of Sand from St. Michael’s Bay, Normandy", which was read at a meeting of the Royal Chemical Society on 16 November 1846. Next year, he received a gold medal from the college for his study on "Gun Cotton and Xyloidine”. Later in the same year he went to University of Giessen
to work under Justus von Liebig
, returning in April 1848 with the degree of Doctor of Philosophy. The subject of his dissertation was possibly "Artificial Formation of Urea from Fulminic Acid".
Although Gladstone had thus formally adopted the pursuit of science as his career, he continued throughout his life to take an active part in religious work. In Clapham his parents were members of the Rev. James Hill’s Congregational Church, and here he taught in the Sunday School, beside conducting services in a Mission Room at White Square. Later on he held a Bible Class for young men on Sunday afternoons, and until the end of his life he was intimately connected with the work of the Young Men's Christian Association founded by George Williams
. For many years he was the chief organiser of the Sunday afternoon devotional meeting held annually at the meeting of the British Association.
In 1850 Gladstone was appointed Lecturer in Chemistry to St. Thomas’s Hospital, a post which he held for two years, and in June 1853, at the unusually young age of 26, he was elected a Fellow of the Royal Society. In 1864 he lost his wife, their eldest daughter and only son. This, however, seems to have been followed by only temporary suspense of activity, social and scientific. In 1863-4 and again in 1866-8 he served on the Council of the Royal Society, and having been a member of the Royal Commission on Lighthouses, Buoys, and Beacons from 1859 to 1862, he became a member of the Gun Cotton Committee in 1864-8. In politics Gladstone was a Liberal, and on more than one occasion he was tempted to enter Parliament. In 1868 he unsuccessfully contested the borough of York. In 1869 he married Margaret Thompson King, daughter of the late Rev. Dr. David King, and niece of Lord Kelvin. This lady died in 1870, leaving one daughter.
During 1874–1877, Gladstone held the Fullerian Professorship of Chemistry at the Royal Institution
, and was first President of the Physical Society, of which he was one of the founders. He was President of the Chemical Society during 1877–9, and in 1898 he was one of the six past Presidents of that Society who had been Fellows for upwards of fifty years, and in whose honour a banquet was given under the chairmanship of the President, Professor James Dewar
.
Gladstone was very fond of London and seems never to have wished to live out of the metropolis. He spoke French readily, and frequently attended the summer meetings of the Association Francaise pour 1’Avancement des Sciences, and was also at one or two meetings of the Swiss Association. In recognition of his services to education he was elected an Honorary Fellow of the College of Preceptors. He also received the degree Sc.D. at the celebration of the Tercentenary of Trinity College, Dublin, in 1892, and the Davy Medal
from the Royal Society in 1897 "for his numerous contributions to chemical science, and especially for his important work in the application of optical methods to chemistry". In 1880 he became a member of the Company of Wheelwrights, and as a liveryman took part in the last year of his life in the election of the Lord Mayor, at the Guildhall, on Michaelmas Day. On the day of his death, 6 October 1902, he presided in the afternoon at a meeting of the Christian Evidence Society, and, after walking part of the way home, was found lifeless in his study as the result of failure of the heart. He was buried in Kensal Green cemetery
.
Optical phenomena and the properties of elements and compounds in relation to light have always been a major interest for Gladstone. This comes out quite early in his career, and in a variety of forms. Thus in 1854 he lectured at the Royal Institution on “Chromatic Phenomena exhibited by Transmitted Light.” In 1855 there were “Notes on some substances which exhibit the Phenomena of Fluorescence”, and in 1856 on “Some Dichromatic Phenomena among Solutions”. In 1858 he drew attention to the use of the prism in qualitative analysis (Quart. Journ. Chem. Soc., 1O, 79), and discovered distinct lines in the absorption spectrum of didymium
, a substance long afterwards resolved by Auer von Welsbach
into the two elements known as praseodymium
and neodymium
. A little later he studied the absorption spectrum of the atmosphere, and found that the Fraunhofer lines
varied according to the time of day, and that the change must be due to some constituents of the earth’s atmosphere. In this research he was joined by Sir David Brewster
, and together they produced a paper on the lines of the solar spectrum in 1860. The most important work of Gladstone in this direction was the long series of observations on the refraction
and dispersion
of liquids, which originated with a study of the "Influence of Temperature on the Refraction of Light,” (Phil. Trans., 1858) and followed by "Researches on the Refraction, Dispersion, and Sensitiveness of Liquids,” (Phil. Trans., 1863).
Another memorable series of researches commenced about 1872, in conjunction with his assistant Alfred Tribe, resulted in the discovery of the zinc-copper couple
, and its application to the production of the organozinc compound
s and to other purposes. The couple has long since found its way into every laboratory in the world, and as a reducing agent has met with applications not only in connection with carbon compounds but for many purposes in analysis.
Chemist
A chemist is a scientist trained in the study of chemistry. Chemists study the composition of matter and its properties such as density and acidity. Chemists carefully describe the properties they study in terms of quantities, with detail on the level of molecules and their component atoms...
. He served as President of the Physical Society between 1874 and 1876 and during 1877–1879 was President of the Chemical Society
Chemical Society
The Chemical Society was formed in 1841 as a result of increased interest in scientific matters....
. Apart from chemistry, where one of his most notable publications was on bromination of rubber, he undertook pioneering work in optics and spectroscopy.
Biography
He was born to John Gladstone, a wholesale draper in HackneyMetropolitan Borough of Hackney
The Metropolitan Borough of Hackney was a Metropolitan borough of the County of London from 1900 to 1965. Its area became part of the London Borough of Hackney.-Formation and boundaries:...
, London
London
London is the capital city of :England and the :United Kingdom, the largest metropolitan area in the United Kingdom, and the largest urban zone in the European Union by most measures. Located on the River Thames, London has been a major settlement for two millennia, its history going back to its...
and Alison Hall, as the eldest of three sons. The three brothers were educated entirely at home under tutors, and from very early days all showed a strong inclination toward natural science. In 1842 the father retired from business, and the family spent a year in travelling on the continent. Part of this time was passed in Italy with their old friends: Charles Tilt, his wife and their daughter May, who in 1852 became the wife of John Hall Gladstone.
From early years Gladstone had shown strong religious tendencies, and when, at the age of seventeen, the question of his future
career came to be discussed, he wished to enter the Christian ministry. From this course he was dissuaded both by his father and by Mr. Tilt, and in December 1844 he entered University College, London. Here he attended Graham’s
Thomas Graham (chemist)
Thomas Graham FRS was a nineteenth-century Scottish chemist who is best-remembered today for his pioneering work in dialysis and the diffusion of gases.- Life and work :...
lectures on chemistry and worked in his private laboratory, and here he prepared his earliest scientific contribution on "Analysis of Sand from St. Michael’s Bay, Normandy", which was read at a meeting of the Royal Chemical Society on 16 November 1846. Next year, he received a gold medal from the college for his study on "Gun Cotton and Xyloidine”. Later in the same year he went to University of Giessen
University of Giessen
The University of Giessen is officially called the Justus Liebig University Giessen after its most famous faculty member, Justus von Liebig, the founder of modern agricultural chemistry and inventor of artificial fertiliser.-History:The University of Gießen is among the oldest institutions of...
to work under Justus von Liebig
Justus von Liebig
Justus von Liebig was a German chemist who made major contributions to agricultural and biological chemistry, and worked on the organization of organic chemistry. As a professor, he devised the modern laboratory-oriented teaching method, and for such innovations, he is regarded as one of the...
, returning in April 1848 with the degree of Doctor of Philosophy. The subject of his dissertation was possibly "Artificial Formation of Urea from Fulminic Acid".
Although Gladstone had thus formally adopted the pursuit of science as his career, he continued throughout his life to take an active part in religious work. In Clapham his parents were members of the Rev. James Hill’s Congregational Church, and here he taught in the Sunday School, beside conducting services in a Mission Room at White Square. Later on he held a Bible Class for young men on Sunday afternoons, and until the end of his life he was intimately connected with the work of the Young Men's Christian Association founded by George Williams
George Williams (YMCA)
Sir George Williams , was the founder of the YMCA.Williams was born on a farm in Dulverton, Somerset, England. As a young man, he described himself as a "careless, thoughtless, godless, swearing young fellow" but eventually became a devout Christian.He went to London and worked in a draper's shop...
. For many years he was the chief organiser of the Sunday afternoon devotional meeting held annually at the meeting of the British Association.
In 1850 Gladstone was appointed Lecturer in Chemistry to St. Thomas’s Hospital, a post which he held for two years, and in June 1853, at the unusually young age of 26, he was elected a Fellow of the Royal Society. In 1864 he lost his wife, their eldest daughter and only son. This, however, seems to have been followed by only temporary suspense of activity, social and scientific. In 1863-4 and again in 1866-8 he served on the Council of the Royal Society, and having been a member of the Royal Commission on Lighthouses, Buoys, and Beacons from 1859 to 1862, he became a member of the Gun Cotton Committee in 1864-8. In politics Gladstone was a Liberal, and on more than one occasion he was tempted to enter Parliament. In 1868 he unsuccessfully contested the borough of York. In 1869 he married Margaret Thompson King, daughter of the late Rev. Dr. David King, and niece of Lord Kelvin. This lady died in 1870, leaving one daughter.
During 1874–1877, Gladstone held the Fullerian Professorship of Chemistry at the Royal Institution
Royal Institution
The Royal Institution of Great Britain is an organization devoted to scientific education and research, based in London.-Overview:...
, and was first President of the Physical Society, of which he was one of the founders. He was President of the Chemical Society during 1877–9, and in 1898 he was one of the six past Presidents of that Society who had been Fellows for upwards of fifty years, and in whose honour a banquet was given under the chairmanship of the President, Professor James Dewar
James Dewar
Sir James Dewar FRS was a Scottish chemist and physicist. He is probably best-known today for his invention of the Dewar flask, which he used in conjunction with extensive research into the liquefaction of gases...
.
Gladstone was very fond of London and seems never to have wished to live out of the metropolis. He spoke French readily, and frequently attended the summer meetings of the Association Francaise pour 1’Avancement des Sciences, and was also at one or two meetings of the Swiss Association. In recognition of his services to education he was elected an Honorary Fellow of the College of Preceptors. He also received the degree Sc.D. at the celebration of the Tercentenary of Trinity College, Dublin, in 1892, and the Davy Medal
Davy Medal
The Davy Medal is awarded by the Royal Society of London "for an outstandingly important recent discovery in any branch of chemistry". Named after Humphry Davy, the medal is awarded with a gift of £1000. The medal was first awarded in 1877 to Robert Wilhelm Bunsen and Gustav Robert Kirchhoff "for...
from the Royal Society in 1897 "for his numerous contributions to chemical science, and especially for his important work in the application of optical methods to chemistry". In 1880 he became a member of the Company of Wheelwrights, and as a liveryman took part in the last year of his life in the election of the Lord Mayor, at the Guildhall, on Michaelmas Day. On the day of his death, 6 October 1902, he presided in the afternoon at a meeting of the Christian Evidence Society, and, after walking part of the way home, was found lifeless in his study as the result of failure of the heart. He was buried in Kensal Green cemetery
Kensal Green Cemetery
Kensal Green Cemetery is a cemetery in Kensal Green, in the west of London, England. It was immortalised in the lines of G. K. Chesterton's poem The Rolling English Road from his book The Flying Inn: "For there is good news yet to hear and fine things to be seen; Before we go to Paradise by way of...
.
Research
In his early years, Gladstone conducted studies of phosphamide and similar compounds, suggested by Liebig and revised ten years later; an inquiry into the composition of nitrogen iodide (1852). His more important work was published in the Philosophical Transactions in 1855, on "Circumstances modifying the Action of chemical Affinity". Here, the author examined the question, arising out of the researches of Bunsen and Debus, whether when two substances act on each other an increase in the quantity of one of them leads to a corresponding increase in the amount of chemical change observed, and whether such change occurs continuously or discretely, in atomic proportions.Optical phenomena and the properties of elements and compounds in relation to light have always been a major interest for Gladstone. This comes out quite early in his career, and in a variety of forms. Thus in 1854 he lectured at the Royal Institution on “Chromatic Phenomena exhibited by Transmitted Light.” In 1855 there were “Notes on some substances which exhibit the Phenomena of Fluorescence”, and in 1856 on “Some Dichromatic Phenomena among Solutions”. In 1858 he drew attention to the use of the prism in qualitative analysis (Quart. Journ. Chem. Soc., 1O, 79), and discovered distinct lines in the absorption spectrum of didymium
Didymium
Didymium is a mixture of the elements praseodymium and neodymium. It is used in safety glasses for glassblowing and blacksmithing, especially when a gas powered forge is used, where it provides a filter which selectively blocks the yellowish light at 589 nm emitted by the hot sodium in the glass,...
, a substance long afterwards resolved by Auer von Welsbach
Carl Auer von Welsbach
Carl Auer Freiherr von Welsbach was an Austrian scientist and inventor who had a talent for not only discovering advances, but turning them into commercially successful products...
into the two elements known as praseodymium
Praseodymium
Praseodymium is a chemical element that has the symbol Pr and atomic number 59. Praseodymium is a soft, silvery, malleable and ductile metal in the lanthanide group. It is too reactive to be found in native form, and when artificially prepared, it slowly develops a green oxide coating.The element...
and neodymium
Neodymium
Neodymium is a chemical element with the symbol Nd and atomic number 60. It is a soft silvery metal that tarnishes in air. Neodymium was discovered in 1885 by the Austrian chemist Carl Auer von Welsbach. It is present in significant quantities in the ore minerals monazite and bastnäsite...
. A little later he studied the absorption spectrum of the atmosphere, and found that the Fraunhofer lines
Fraunhofer lines
In physics and optics, the Fraunhofer lines are a set of spectral lines named for the German physicist Joseph von Fraunhofer . The lines were originally observed as dark features in the optical spectrum of the Sun....
varied according to the time of day, and that the change must be due to some constituents of the earth’s atmosphere. In this research he was joined by Sir David Brewster
David Brewster
Sir David Brewster KH PRSE FRS FSA FSSA MICE was a Scottish physicist, mathematician, astronomer, inventor, writer and university principal.-Early life:...
, and together they produced a paper on the lines of the solar spectrum in 1860. The most important work of Gladstone in this direction was the long series of observations on the refraction
Refraction
Refraction is the change in direction of a wave due to a change in its speed. It is essentially a surface phenomenon . The phenomenon is mainly in governance to the law of conservation of energy. The proper explanation would be that due to change of medium, the phase velocity of the wave is changed...
and dispersion
Dispersion
Dispersion may refer to:In physics:*The dependence of wave velocity on frequency or wavelength:**Dispersion , for light waves**Dispersion **Acoustic dispersion, for sound waves...
of liquids, which originated with a study of the "Influence of Temperature on the Refraction of Light,” (Phil. Trans., 1858) and followed by "Researches on the Refraction, Dispersion, and Sensitiveness of Liquids,” (Phil. Trans., 1863).
Another memorable series of researches commenced about 1872, in conjunction with his assistant Alfred Tribe, resulted in the discovery of the zinc-copper couple
Zinc-copper couple
Zinc-copper couple is an alloy of zinc and copper that is employed as a reagent in organic synthesis. The “couple” was popularized after the report by Simmons and Smith in 1959 of its application as an activated source of zinc required for formation of an organozinc reagent in the Simmons-Smith...
, and its application to the production of the organozinc compound
Organozinc compound
Organozinc compounds in organic chemistry contain carbon to zinc chemical bonds. Organozinc chemistry is the science of organozinc compounds describing their physical properties, synthesis and reactions....
s and to other purposes. The couple has long since found its way into every laboratory in the world, and as a reducing agent has met with applications not only in connection with carbon compounds but for many purposes in analysis.