Liesegang rings
Encyclopedia
Liesegang rings are a phenomenon seen in many, if not most, chemical systems undergoing a precipitation reaction, under certain conditions of concentration and in the absence of convection.

History

The phenomenon was first noted over one hundred years ago (in 1896) by the German chemist Raphael E. Liesegang
Raphael Eduard Liesegang
Raphael Eduard Liesegang was a German chemist, photographer and entrepreneur born in Elberfeld. He is known for his work on Liesegang rings He also helped develop the methods of capillary analysis, a precursor to paper chromatography published a paper on the possibility of television , contributed...

, and has aroused the curiosity of chemists for many years. It was first noted when he dropped a solution of silver nitrate
Silver nitrate
Silver nitrate is an inorganic compound with chemical formula . This compound is a versatile precursor to many other silver compounds, such as those used in photography. It is far less sensitive to light than the halides...

 on to a thin layer of gel containing potassium dichromate. After a few hours, sharp concentric rings of insoluble silver dichromate formed. When formed in a test tube by diffusing one component from the top, layers or bands of precipitate form, rather than rings.

Silver nitrate potassium dichromate reaction

The reactions are most usually carried out in test-tubes into which a gel
Gel
A gel is a solid, jelly-like material that can have properties ranging from soft and weak to hard and tough. Gels are defined as a substantially dilute cross-linked system, which exhibits no flow when in the steady-state...

 is formed that contains a dilute solution of one of the reactants.

If a hot solution of agar gel, also containing a dilute solution of potassium dichromate is poured in a test-tube, and after the gel solidifies, a more concentrated solution of silver nitrate
Silver nitrate
Silver nitrate is an inorganic compound with chemical formula . This compound is a versatile precursor to many other silver compounds, such as those used in photography. It is far less sensitive to light than the halides...

 is poured on top of the gel, the silver nitrate will begin to diffuse into the gel. It will then encounter the potassium dichromate and will form a continuous region of precipitate at the top of the tube.

After some hours, the continuous region of precipitation is followed by a clear region with no sensible precipitate, followed by a short region of precipitate further down the tube. This process continues down the tube forming several, perhaps a couple of dozen regions of clearing, then precipitation rings.

Some general observations

Over the decades huge number of precipitation reactions have been used to study the phenomenon, and it seems quite general. Chromates, metal hydroxides, carbonates, and sulfides, formed with lead, copper, silver, mercury and cobalt salts are sometimes favored by investigators, perhaps because of the pretty, colored precipitates formed.

The gels used are usually gelatin
Gelatin
Gelatin is a translucent, colorless, brittle , flavorless solid substance, derived from the collagen inside animals' skin and bones. It is commonly used as a gelling agent in food, pharmaceuticals, photography, and cosmetic manufacturing. Substances containing gelatin or functioning in a similar...

, agar
Agar
Agar or agar-agar is a gelatinous substance derived from a polysaccharide that accumulates in the cell walls of agarophyte red algae. Throughout history into modern times, agar has been chiefly used as an ingredient in desserts throughout Asia and also as a solid substrate to contain culture medium...

 or silicic acid
Silicic acid
Silicic acid is a general name for a family of chemical compounds of the element silicon, hydrogen, and oxygen, with the general formula [SiOx4-2x]n...

 gel.

The concentration ranges over which the rings form in a given gel for a precipitating system can usually be found for any system by a little systematic empirical experimentation in a few hours. Often the concentration of the component in the agar gel should be substantially less concentrated (perhaps an order of magnitude or more) than the one placed on top of the gel.

The first feature usually noted is that the bands which form farther away from the liquid-gel interface are generally farther apart. Some investigators measure this distance and report in some systems, at least, a systematic formula for the distance that they form at. The most frequent observation is that the distance apart that the rings form is proportional to the distance from the liquid-gel interface. This is by no means universal, however, and sometimes they form at essentially random, irreproducible distances.

Another feature often noted is that the bands themselves do not move with time, but rather form in place and stay there.

For very many systems the precipitate that forms is not the fine coagulant or flocs seen on mixing the two solutions in the absence of the gel, but rather coarse, crystalline dispersions. Sometimes the crystals are well separated from one another, and only a few form in each band.

The precipitate that forms a band is not always a binary insoluble compound, but may be even a pure metal. Water glass of density 1.06 made acidic by sufficient acetic acid to make it gel, with 0.05 N copper sulfate in it, covered by a 1 percent solution of hydroxylamine hydrochloride produces large tetrahedrons of metallic copper in the bands.

It is not possible to make any general statement of the effect of the composition of the gel. A system that forms nicely for one set of components, might fail altogether and require a different set of conditions if the gel is switched, say, from agar to gelatin. The essential feature of the gel required is that thermal convection in the tube be prevented altogether.

Most systems will form rings in the absence of the gelling system if the experiment is carried out in a capillary, where convection does not disturb their formation. In fact, the system does not have to even be liquid. A tube plugged with cotton with a little ammonium hydroxide at one end, and a solution of hydrochloric acid at the other will show rings of deposited ammonium chloride
Ammonium chloride
Ammonium chloride NH4Cl is an inorganic compound with the formula NH4Cl. It is a white crystalline salt that is highly soluble in water. Solutions of ammonium chloride are mildly acidic. Sal ammoniac is a name of natural, mineralogical form of ammonium chloride...

 where the two gases meet, if the conditions are chosen correctly. Ring formation has also been observed in solid glasses containing a reducible species. For example, bands of silver have been generated by immersing silicate glass in molten AgNO3 for extended periods of time (Pask and Parmelee, 1943).

Theories

Several different theories have been proposed to explain the formation of Liesegang rings. The chemist Wilhelm Ostwald
Wilhelm Ostwald
Friedrich Wilhelm Ostwald was a Baltic German chemist. He received the Nobel Prize in Chemistry in 1909 for his work on catalysis, chemical equilibria and reaction velocities...

 in 1897 proposed a theory based on the idea that a precipitate is not formed immediately upon the concentration of the ions exceeding a solubility product, but a region of supersaturation
Supersaturation
The term supersaturation refers to a solution that contains more of the dissolved material than could be dissolved by the solvent under normal circumstances...

 occurs first. When the limit of stability of the supersaturation is reached, the precipitate forms, and a clear region forms ahead of the diffusion front because the precipitate that is below the solubility limit diffuses onto the precipitate. This was argued to be a critically flawed theory when it was shown that seeding the gel with a colloidal dispersion of the precipitate (which would arguably prevent any significant region of supersaturation) did not prevent the formation of the rings.

Another theory focuses on the adsorption
Adsorption
Adsorption is the adhesion of atoms, ions, biomolecules or molecules of gas, liquid, or dissolved solids to a surface. This process creates a film of the adsorbate on the surface of the adsorbent. It differs from absorption, in which a fluid permeates or is dissolved by a liquid or solid...

 of one or the other of the precipitating ions onto the colloidal particles of the precipitate which forms. If the particles are small, the absorption is large, diffusion is "hindered" and this somehow results in the formation of the rings.

Still another proposal, the "coagulation
Coagulation
Coagulation is a complex process by which blood forms clots. It is an important part of hemostasis, the cessation of blood loss from a damaged vessel, wherein a damaged blood vessel wall is covered by a platelet and fibrin-containing clot to stop bleeding and begin repair of the damaged vessel...

 theory" states that the precipitate first forms as a fine colloidal dispersion, which then undergoes coagulation by an excess of the diffusing electrolyte and this somehow results in the formation of the rings.

Some more recent theories invoke an auto-catalytic
Autocatalysis
A single chemical reaction is said to have undergone autocatalysis, or be autocatalytic, if the reaction product itself is the catalyst for that reaction....

 step in the reaction that results in the formation of the precipitate. This would seem to contradict the notion that auto-catalytic reactions are, actually, quite rare in nature.

The solution of the diffusion equation with proper boundary conditions, and a set of good assumptions on supersaturation, adsorption, auto-catalysis, and coagulation alone, or in some combination, has not been done yet, it appears, at least in a way that makes a quantitative comparison with experiment possible.

A general theory based on Ostwald's 1897 theory has recently been proposed http://www.insilico.hu/liesegang/index.html. It can account for several important features sometimes seen, such as revert and helical banding.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK