List of A6 polytopes
Encyclopedia
Orthographic projection
Orthographic projection
Orthographic projection is a means of representing a three-dimensional object in two dimensions. It is a form of parallel projection, where all the projection lines are orthogonal to the projection plane, resulting in every plane of the scene appearing in affine transformation on the viewing surface...

s
A6 Coxeter plane

6-simplex

In 6-dimensional geometry
Geometry
Geometry arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers ....

, there are 35 uniform polytopes with A6 symmetry. There is one self-dual regular form, the 6-simplex with 7 vertices.

Each can be visualized as symmetric orthographic projection
Orthographic projection
Orthographic projection is a means of representing a three-dimensional object in two dimensions. It is a form of parallel projection, where all the projection lines are orthogonal to the projection plane, resulting in every plane of the scene appearing in affine transformation on the viewing surface...

s in Coxeter planes of the A6 Coxeter group, and other subgroups.

Graphs

Symmetric orthographic projection
Orthographic projection
Orthographic projection is a means of representing a three-dimensional object in two dimensions. It is a form of parallel projection, where all the projection lines are orthogonal to the projection plane, resulting in every plane of the scene appearing in affine transformation on the viewing surface...

s of these 35 polytopes can be made in the A6, A5, A4, A3, A2 Coxeter planes. Ak graphs have [k+1] symmetry. For even k and symmetrically nodea_1ed-diagrams, symmetry doubles to [2(k+1)].

These 63 polytopes are each shown in these 5 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.
# A6
[7]
A5
[6]
A4
[5]
A3
[4]
A2
[3]
Coxeter-Dynkin diagram
Coxeter-Dynkin diagram
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors...


Schläfli symbol
Name
1
t0{3,3,3,3,3}
6-simplex
Heptapeton (hop)
2
t1{3,3,3,3,3}
Rectified 6-simplex
Rectified 6-simplex
In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex.There are three unique degrees of rectifications, including the zeroth, the 6-simplex itself. Vertices of the rectified 6-simplex are located at the edge-centers of the...


Rectified heptapeton (ril)
3
t0,1{3,3,3,3,3}
Truncated 6-simplex
Truncated 6-simplex
In six-dimensional geometry, a truncated 6-simplex is a convex uniform 6-polytope, being a truncation of the regular 6-simplex.There are unique 3 degrees of truncation. Vertices of the truncation 6-simplex are located as pairs on the edge of the 6-simplex. Vertices of the bitruncated 6-simplex are...


Truncated heptapeton (til)
4
t2{3,3,3,3,3}
Birectified 6-simplex
Birectified heptapeton (bril)
5
t0,2{3,3,3,3,3}
Cantellated 6-simplex
Cantellated 6-simplex
In six-dimensional geometry, a cantellated 6-simplex is a convex uniform 6-polytope, being a cantellation of the regular 6-simplex.There are unique 4 degrees of cantellation for the 6-simplex, including truncations.- Cantellated 6-simplex:...


Small rhombated heptapeton (sril)
6
t1,2{3,3,3,3,3}
Bitruncated 6-simplex
Bitruncated heptapeton (batal)
7
t0,1,2{3,3,3,3,3}
Cantitruncated 6-simplex
Great rhombated heptapeton (gril)
8
t0,3{3,3,3,3,3}
Runcinated 6-simplex
Runcinated 6-simplex
In six-dimensional geometry, a runcinated 6-simplex is a convex uniform 6-polytope constructed as a runcination of the regular 6-simplex....


Small prismated heptapeton (spil)
9
t1,3{3,3,3,3,3}
Bicantellated 6-simplex
Small birhombated heptapeton (sabril)
10
t0,1,3{3,3,3,3,3}
Runcitruncated 6-simplex
Prismatotruncated heptapeton (patal)
11
t2,3{3,3,3,3,3}
Tritruncated 6-simplex
Tetradecapeton (fe)
12
t0,2,3{3,3,3,3,3}
Runcicantellated 6-simplex
Prismatorhombated heptapeton (pril)
13
t1,2,3{3,3,3,3,3}
Bicantitruncated 6-simplex
Great birhombated heptapeton (gabril)
14
t0,1,2,3{3,3,3,3,3}
Runcicantitruncated 6-simplex
Great prismated heptapeton (gapil)
15
t0,4{3,3,3,3,3}
Stericated 6-simplex
Stericated 6-simplex
In six-dimensional geometry, a stericated 6-simplex is a convex uniform 6-polytope with 4th order truncations of the regular 6-simplex....


Small cellated heptapeton (scal)
16
t1,4{3,3,3,3,3}
Biruncinated 6-simplex
Small biprismato-tetradecapeton (sibpof)
17
t0,1,4{3,3,3,3,3}
Steritruncated 6-simplex
cellitruncated heptapeton (catal)
18
t0,2,4{3,3,3,3,3}
Stericantellated 6-simplex
Cellirhombated heptapeton (cral)
19
t1,2,4{3,3,3,3,3}
Biruncitruncated 6-simplex
Biprismatorhombated heptapeton (bapril)
20
t0,1,2,4{3,3,3,3,3}
Stericantitruncated 6-simplex
Celligreatorhombated heptapeton (cagral)
21
t0,3,4{3,3,3,3,3}
Steriruncinated 6-simplex
Celliprismated heptapeton (copal)
22
t0,1,3,4{3,3,3,3,3}
Steriruncitruncated 6-simplex
celliprismatotruncated heptapeton (captal)
23
t0,2,3,4{3,3,3,3,3}
Steriruncicantellated 6-simplex
celliprismatorhombated heptapeton (copril)
24
t1,2,3,4{3,3,3,3,3}
Biruncicantitruncated 6-simplex
Great biprismato-tetradecapeton (gibpof)
25
t0,1,2,3,4{3,3,3,3,3}
Steriruncicantitruncated 6-simplex
Great cellated heptapeton (gacal)
26
t0,5{3,3,3,3,3}
Pentellated 6-simplex
Pentellated 6-simplex
In six-dimensional geometry, a pentellated 6-simplex is a convex uniform 6-polytope with 5th order truncations of the regular 6-simplex.There are unique 10 degrees of pentellations of the 6-simplex with permutations of truncations, cantellations, runcinations, and sterications...


Small teri-tetradecapeton (staf)
27
t0,1,5{3,3,3,3,3}
Pentitruncated 6-simplex
Tericellated heptapeton (tocal)
28
t0,2,5{3,3,3,3,3}
Penticantellated 6-simplex
Teriprismated heptapeton (tapal)
29
t0,1,2,5{3,3,3,3,3}
Penticantitruncated 6-simplex
Terigreatorhombated heptapeton (togral)
30
t0,1,3,5{3,3,3,3,3}
Pentiruncitruncated 6-simplex
Tericellirhombated heptapeton (tocral)
31
t0,2,3,5{3,3,3,3,3}
Pentiruncicantellated 6-simplex
Teriprismatorhombi-tetradecapeton (taporf)
32
t0,1,2,3,5{3,3,3,3,3}
Pentiruncicantitruncated 6-simplex
Terigreatoprismated heptapeton (tagopal)
33
t0,1,4,5{3,3,3,3,3}
Pentisteritruncated 6-simplex
tericellitrunki-tetradecapeton (tactaf)
34
t0,1,2,4,5{3,3,3,3,3}
Pentistericantitruncated 6-simplex
tericelligreatorhombated heptapeton (tacogral)
35
t0,1,2,3,4,5{3,3,3,3,3}
Omnitruncated 6-simplex
Great teri-tetradecapeton (gotaf)
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK