Locally finite group
Encyclopedia
In mathematics
Mathematics
Mathematics is the study of quantity, space, structure, and change. Mathematicians seek out patterns and formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity...

, in the field of group theory
Group theory
In mathematics and abstract algebra, group theory studies the algebraic structures known as groups.The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces can all be seen as groups endowed with additional operations and...

, a locally finite group is a type of group
Group (mathematics)
In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines any two of its elements to form a third element. To qualify as a group, the set and the operation must satisfy a few conditions called group axioms, namely closure, associativity, identity...

 that can be studied in ways analogous to a finite group
Finite group
In mathematics and abstract algebra, a finite group is a group whose underlying set G has finitely many elements. During the twentieth century, mathematicians investigated certain aspects of the theory of finite groups in great depth, especially the local theory of finite groups, and the theory of...

. Sylow subgroups, Carter subgroup
Carter subgroup
In mathematics, especially in the field of group theory, a Carter subgroup of a finite group G is a subgroup H that is a nilpotent group, and self-normalizing...

s, and abelian subgroups of locally finite groups have been studied.

Definition and first consequences

A locally finite group is a group for which every finitely generated subgroup
Subgroup
In group theory, given a group G under a binary operation *, a subset H of G is called a subgroup of G if H also forms a group under the operation *. More precisely, H is a subgroup of G if the restriction of * to H x H is a group operation on H...

 is finite
Finite group
In mathematics and abstract algebra, a finite group is a group whose underlying set G has finitely many elements. During the twentieth century, mathematicians investigated certain aspects of the theory of finite groups in great depth, especially the local theory of finite groups, and the theory of...

.

Since the cyclic subgroups of a locally finite group are finite, every element has finite order
Order (group theory)
In group theory, a branch of mathematics, the term order is used in two closely related senses:* The order of a group is its cardinality, i.e., the number of its elements....

, and so the group is periodic
Periodic group
In group theory, a periodic group or a torsion group is a group in which each element has finite order. All finite groups are periodic. The concept of a periodic group should not be confused with that of a cyclic group, although all finite cyclic groups are periodic.The exponent of a periodic group...

.

Examples and non-examples

Examples:
  • Every finite group is locally finite
  • Every infinite direct sum
    Direct sum
    In mathematics, one can often define a direct sum of objectsalready known, giving a new one. This is generally the Cartesian product of the underlying sets , together with a suitably defined structure. More abstractly, the direct sum is often, but not always, the coproduct in the category in question...

     of finite groups is locally finite (Although the direct product
    Direct product
    In mathematics, one can often define a direct product of objectsalready known, giving a new one. This is generally the Cartesian product of the underlying sets, together with a suitably defined structure on the product set....

     may not be.)
  • The Prüfer group
    Prüfer group
    In mathematics, specifically in group theory, the Prüfer p-group or the p-quasicyclic group or p∞-group, Z, for a prime number p is the unique p-group in which every element has p pth roots. The group is named after Heinz Prüfer...

    s are locally finite abelian groups
  • Every Hamiltonian group
    Hamiltonian group
    In group theory, a Dedekind group is a group G such that every subgroup of G is normal.All abelian groups are Dedekind groups.A non-abelian Dedekind group is called a Hamiltonian group....

     is locally finite
  • Every periodic solvable group is locally finite .
  • Every subgroup
    Subgroup
    In group theory, given a group G under a binary operation *, a subset H of G is called a subgroup of G if H also forms a group under the operation *. More precisely, H is a subgroup of G if the restriction of * to H x H is a group operation on H...

     of a locally finite group is locally finite. If G is a group and S is a subgroup of G and F is a finite subset of S, the subgroup generated by F cannot be an infinite subset of S for then it would be an infinite subset of G contradicting the fact that G is locally finite.
  • Every group has a unique maximal normal locally finite subgroup
  • Every periodic subgroup
    Periodic group
    In group theory, a periodic group or a torsion group is a group in which each element has finite order. All finite groups are periodic. The concept of a periodic group should not be confused with that of a cyclic group, although all finite cyclic groups are periodic.The exponent of a periodic group...

     of the general linear group
    General linear group
    In mathematics, the general linear group of degree n is the set of n×n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible...

     over the complex numbers is locally finite. Since all locally finite groups are periodic, this means that for linear groups and periodic groups the conditions are identical.


Non-examples:
  • No group with an element of infinite order is a locally finite group
  • No nontrivial free group
    Free group
    In mathematics, a group G is called free if there is a subset S of G such that any element of G can be written in one and only one way as a product of finitely many elements of S and their inverses...

     is locally finite
  • A Tarski monster group
    Tarski monster group
    In mathematics, a Tarski monster group, named for Alfred Tarski, is an infinite group G, such that every proper subgroup H of G, other than the identity subgroup, is a cyclic group of order a fixed prime number p. A Tarski monster group is necessarily simple. It was shown by A. Yu...

     is periodic, but not locally finite.

Properties

The class of locally finite groups is closed under subgroups, quotients
Quotient group
In mathematics, specifically group theory, a quotient group is a group obtained by identifying together elements of a larger group using an equivalence relation...

, and extensions
Group extension
In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If Q and N are two groups, then G is an extension of Q by N if there is a short exact sequence...

 .

Locally finite groups satisfy a weaker form of Sylow's theorems. If a locally finite group has a finite p-subgroup
P-group
In mathematics, given a prime number p, a p-group is a periodic group in which each element has a power of p as its order: each element is of prime power order. That is, for each element g of the group, there exists a nonnegative integer n such that g to the power pn is equal to the identity element...

 contained in no other p-subgroups, then all maximal p-subgroups are finite and conjugate. If there are finitely many conjugates, then the number of conjugates is congruent to 1 modulo p. In fact, if every countable subgroup of a locally finite group has only countably many maximal p-subgroups, then every maximal p-subgroup of the group is conjugate .

The class of locally finite groups behaves somewhat similarly to the class of finite groups. Much of the 1960s theory of formations and Fitting classes, as well as the older 19th century and 1930s theory of Sylow subgroups has an analogue in the theory of locally finite groups .

Similarly to the Burnside problem, mathematicians have wondered whether every infinite group contains an infinite abelian subgroup
Abelian group
In abstract algebra, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on their order . Abelian groups generalize the arithmetic of addition of integers...

. While this need not be true in general, a result of Philip Hall
Philip Hall
Philip Hall FRS , was an English mathematician.His major work was on group theory, notably on finite groups and solvable groups.-Biography:...

 and others is that every infinite locally finite group contains an infinite abelian group. The proof of this fact in infinite group theory relies upon the Feit–Thompson theorem
Feit–Thompson theorem
In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by - History : conjectured that every nonabelian finite simple group has even order...

on the solubility of finite groups of odd order .
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK