Molten-Salt Reactor Experiment
Encyclopedia
The Molten-Salt Reactor Experiment (MSRE) was an experimental molten-salt reactor at the Oak Ridge National Laboratory
(ORNL) researching this technology through the 1960s; constructed by 1964, it went critical in 1965 and was operated until 1969.
The MSRE was a 7.4 MWth test reactor simulating the neutronic "kernel" of a type of inherently safe epithermal thorium
breeder reactor
called the Liquid fluoride thorium reactor
. It used three fuels: plutonium-239
, uranium-235
and uranium-233
. The last, 233UF4
was the result of breeding from thorium. Since this was an engineering test, the large, expensive breeding blanket of thorium salt was omitted in favor of neutron measurements.
In the MSRE, the heat from the reactor core was shed via a cooling system using air blowers and radiator
s. It is thought similar reactors could power high-efficiency heat engine
s such as gas turbine
s.
The MSRE's piping, core vat and structural components were made from Hastelloy
-N and its moderator was a pyrolytic graphite
core. The fuel for the MSRE was LiF
-BeF2
-ZrF4-UF4
(65-30-5-0.1), the graphite core moderated
it, and its secondary coolant
was FLiBe
(2LiF-BeF2), it operated as hot as 650 °C and operated for the equivalent of about 1.5 years of full power operation.
The result promised to be a simple, reliable reactor. The purpose of the Molten-Salt Reactor Experiment was to demonstrate that some of the key features of the proposed molten-salt power reactor
s could be embodied in a practical reactor that could be operated safely and reliably and be maintained without excessive difficulty. For simplicity, it was to be a fairly small, one-fluid (i.e. non-breeding) reactor operating at 10 MW(t) or less, with heat rejection to the air via a secondary (fuel-free) salt.
.
Before the MSRE development began, tests had shown that salt would not permeate graphite in which the pores were on the order of a micrometer. Graphite with the desired pore structure was available only in small, experimentally prepared pieces, however, and when a manufacturer set out to produce a new grade (CGB) to meet the MSRE requirements, difficulties were encountered.
This reactor could breed more of its 233U
fuel from thorium
. Thorium is at least four times as abundant as uranium in the Earth's crust and at least 500 times as abundant as uranium-235
. Compared to conventional light-water reactors, this breeding had the potential to eliminate the difficulty and expense of uranium enrichment, as well as the need for fast breeder reactors to make plutonium
fuel from 238U
.
Keeping all the breeding and fuel as fluoride salts made it theoretically possible to combine the reactor core and breeding blanket in one fluid, by sculpting the moderator rods. Further, it appeared that the fluid salt would permit on-site chemical separation of the fuel and wastes.
By 1960
a better understanding of fluoride salt based molten-salt reactors had emerged due to earlier molten salt reactor research for the Aircraft Reactor Experiment.
Fluoride
salts are strongly ionic
, and when melted, are stable at high temperatures, low pressures, and high radiation flux
es. Low pressure stability requires less robust reactor vessels and increases reliability. The high reactivity of fluorine traps most fission reaction byproducts.
The fuel system was located in sealed cells, laid out for maintenance with long-handled tools through openings in the top shielding. A tank of LiF-BeF2 salt was used to flush the fuel circulating system before and after maintenance. In a cell adjacent to the reactor was a simple facility for bubbling gas through the fuel or flush salt: H2-HF
to remove oxide, F2
to remove uranium as UF6
. Haubenreich and Engel, Robertson, and Lindauer provide more detailed descriptions of the reactor and processing plant.
and krypton
to escape from the salt. Removing the most significant neutron poison xenon-135
made the reactor safer and easier to restart. In solid-fuel reactors, on restart the 135Xe
in the fuel absorbs neutrons, followed by a sudden jump in reactivity as the 135Xe is burned out. Conventional reactors may have to wait hours until xenon-135 decays after shutting down and not immediately restarting (so-called iodine pit
).
Also in the pump bowl was a port through which salt samples could be taken or capsules of concentrated fuel-enriching salt (UF4-LiF or PuF3
) could be introduced.
s. Now, such temperatures are seen as an opportunity to use high-efficiency gas turbine
s. After two months of high-power operation, the reactor was down for 3 months because of the failure of one of the main cooling blowers.
The MSRE development program did not include reactor physics
experiments or heat transfer
measurements. There was enough latitude in the MSRE that deviations from predictions would not compromise safety or accomplishment of the objectives of the MSRE.
, nickel
–molybdenum
alloy, Hastelloy
-N, was used in the MSRE and proved compatible with the fluoride salts FLiBe
and FLiNaK
. All metal parts contacting salt were made of Hastelloy-N.
The choice of Hastelloy-N for the MSRE was on the basis of the promising results of tests at aircraft nuclear propulsion
conditions and the availability of much of the required metallurgical data. Development for the MSRE generated the further data required for ASME code approval. It also included preparation of standards for Hastelloy-N procurement and for component fabrication. Almost 200,000 lb (90 Mg) in a variety of shapes of material for the MSRE was produced commercially. Requests for bids on component fabrication went to several companies in the nuclear fabrication industry, but all declined to submit lump-sum bids because of lack of experience with the new alloy
. Consequently all major components were fabricated in U.S. Atomic Energy Commission-owned shops at Oak Ridge
and Paducah
.
At the time that design stresses were set for the MSRE, the data that was available indicated that the strength
and creep rate
of Hastelloy-N were hardly affected by irradiation
. After the construction was well along, the stress-rupture life and fracture
strain were found to be drastically reduced by thermal neutron irradiation. The MSRE stresses were reanalyzed, and it was concluded that the reactor would have adequate life to reach its goals. At the same time a program was launched to improve the resistance of Hastelloy-N to the embrittlement
.
An out-of-pile corrosion
test program was carried out for Hastelloy-N which indicated extremely low corrosion rates at MSRE conditions. Capsules exposed in the Materials Testing Reactor showed that salt fission power densities
of more than 200 W/cm3 had no adverse effects on compatibility of fuel salt, Hastelloy-N, and graphite. Fluorine
gas was found to be produced by radiolysis
of frozen salts, but only at temperatures below about 100 °C.
Components that were developed especially for the MSRE included flange
s for 5 inches (127 mm) lines carrying molten salt, freeze valves (an air-cooled section where salt could be frozen and thawed), flexible control rod
s to operate in thimbles at 1200 °F (650 °C), and the fuel sampler-enricher. Centrifugal pump
s were developed similar to those used successfully in the aircraft reactor program, but with provisions for remote maintenance, and including a spray system for xenon removal. Remote maintenance considerations pervaded the MSRE design, and developments included devices for remotely cutting and brazing
together 1½-inch pipe, removable heater-insulation units, and equipment for removing specimens of metal and graphite from the core.
, development of fabrication techniques for Hastelloy-N, development of reactor components, and remote-maintenance planning and preparations.
Checkout and prenuclear tests included 1,000 hours of circulation of flush salt and fuel carrier salt. Nuclear testing of the MSRE began in June 1965, with the addition of enriched 235U as UF4-LiF eutectic to the carrier salt to make the reactor critical. After zero-power experiments to measure rod worth and reactivity coefficients, the reactor was shut down and final preparations made for power operation. Power ascension was delayed when vapors from oil
that had leaked into the fuel pump were polymerized by the radioactive offgas and plugged gas filters and valves. Maximum power, which was limited to 7.4 MW(t) by the capability of the heat-rejection system, was reached in May 1966.
After two months of high-power operation, the reactor was down for three months because of the failure of one of the main cooling blowers. Some further delays were encountered because of offgas line plugging, but by the end of 1966 most of the startup problems were behind. During the next 15 months, the reactor was critical 80% of the time, with runs of 1, 3, and 6 months that were uninterrupted by a fuel drain. By March 1968, the original objectives of the MSRE had been accomplished, and nuclear operation with 235U was concluded.
By this time, ample 233U had become available, so the MSRE program was extended to include substitution of 233U for the uranium in the fuel salt, and operation to observe the new nuclear characteristics. Using the on-site processing equipment the flush salt and fuel salt were fluorinated to recover the uranium in them as UF6. 233UF4-LiF eutectic was then added to the carrier salt, and in October 1968, the MSRE became the world's first reactor to operate on 233U.
The 233U zero-power experiments and dynamics tests confirmed the predicted neutron
ic characteristics. An unexpected consequence of processing the salt was that its physical properties were altered slightly so that more than the usual amount of gas was entrained from the fuel pump into the circulating loop. The circulating gas and the power fluctuations that accompanied it were eliminated by operating the fuel pump at slightly lower speed. Operation at high power for several months permitted accurate measurement of the capture
-to-fission
ratio, for 233U in this reactor, completing the objectives of the 233U operation.
In the concluding months of operation, xenon stripping, deposition of fission products, and tritium
behavior were investigated. The feasibility of using plutonium
in molten-salt reactors was emphasized by adding PuF3 as makeup fuel during this period.
After the final shutdown in December 1969, the reactor was left in standby
for nearly a year. A limited examination program was then carried out, including a moderator bar from the core, a control rod
thimble
, heat exchanger
tubes, parts from the fuel pump bowl, and a freeze valve that had developed a leak during the final reactor shutdown. The radioactive systems were then closed to await ultimate disposal.
The MSRE confirmed expectations and predictions. For example, it was demonstrated that: the fuel salt was immune to radiation damage, the graphite was not attacked by the fuel salt, and the corrosion of Hastelloy-N was negligible. Noble gases were stripped from the fuel salt by a spray system, reducing the 135Xe poisoning by a factor of about 6. The bulk of the fission product
elements remained stable in the salt. Additions of uranium and plutonium to the salt during operation were quick and uneventful, and recovery of uranium by fluorination was efficient. The neutronics, including critical loading, reactivity coefficients, dynamics, and long-term reactivity changes, agreed with prior calculations.
In other areas, the operation resulted in improved data or reduced uncertainties. The 233U capture-to-fission
ratio in a typical MSR neutron spectrum is an example of basic data that was improved. The effect of fissioning on the redox potential of the fuel salt was resolved. The deposition of some elements (“noble metals”) was expected, but the MSRE provided quantitative data on relative deposition on graphite, metal, and liquid-gas interfaces. Heat transfer coefficients measured in the MSRE agreed with conventional design calculations and did not change over the life of the reactor. Limiting oxygen in the salt proved effective, and the tendency of fission products to be dispersed from contaminated equipment during maintenance was low.
Operation of the MSRE provided insights into the problem of tritium
in a molten-salt reactor. It was observed that about 6–10% of the calculated 54 Ci/day (2.0 TBq) production diffused out of the fuel system into the containment cell atmosphere and another 6–10% reached the air through the heat removal system. The fact that these fractions were not higher indicated that something partially negated the transfer of tritium through hot metals.
One unexpected finding was shallow, inter-granular cracking
in all metal surfaces exposed to the fuel salt. The cause of the embrittlement was tellurium - a fission product generated in the fuel. This was first noted in the specimens that were removed from the core at intervals during the reactor operation. Post-operation examination of pieces of a control-rod thimble, heat-exchanger tubes, and pump bowl parts revealed the ubiquity of the cracking and emphasized its importance to the MSR concept. The crack growth was rapid enough to become a problem over the planned thirty-year life of a follow-on thorium breeder reactor. This cracking could be reduced by adding small amounts of niobium
to the Hastelloy-N.
, as well as a potentially dangerous build-up of fluorine
gas — the environment above the solidified salt is approximately one atmosphere of fluorine. The ensuing decontamination and decommissioning project was called "the most technically challenging" activity assigned to Bechtel Jacobs
under its environmental management contract with the U.S. Department of Energy's Oak Ridge Operations organization. In 2003, the MSRE cleanup project was estimated at about $130 million, with decommissioning expected to be completed in 2009.
A detailed description of potential decommissioning processes is described here.; uranium is to be removed from the fuel as the hexafluoride by adding excess fluorine, and plutonium as the plutonium dioxide
by adding sodium carbonate
.
Oak Ridge National Laboratory
Oak Ridge National Laboratory is a multiprogram science and technology national laboratory managed for the United States Department of Energy by UT-Battelle. ORNL is the DOE's largest science and energy laboratory. ORNL is located in Oak Ridge, Tennessee, near Knoxville...
(ORNL) researching this technology through the 1960s; constructed by 1964, it went critical in 1965 and was operated until 1969.
The MSRE was a 7.4 MWth test reactor simulating the neutronic "kernel" of a type of inherently safe epithermal thorium
Thorium
Thorium is a natural radioactive chemical element with the symbol Th and atomic number 90. It was discovered in 1828 and named after Thor, the Norse god of thunder....
breeder reactor
Breeder reactor
A breeder reactor is a nuclear reactor capable of generating more fissile material than it consumes because its neutron economy is high enough to breed fissile from fertile material like uranium-238 or thorium-232. Breeders were at first considered superior because of their superior fuel economy...
called the Liquid fluoride thorium reactor
Liquid fluoride thorium reactor
The liquid fluoride thorium reactor is a thermal breeder reactor which uses the thorium fuel cycle in a fluoride-based molten salt fuel to achieve high operating temperatures at atmospheric pressure....
. It used three fuels: plutonium-239
Plutonium-239
Plutonium-239 is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 has also been used and is currently the secondary isotope. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in...
, uranium-235
Uranium-235
- References :* .* DOE Fundamentals handbook: Nuclear Physics and Reactor theory , .* A piece of U-235 the size of a grain of rice can produce energy equal to that contained in three tons of coal or fourteen barrels of oil. -External links:* * * one of the earliest articles on U-235 for the...
and uranium-233
Uranium-233
Uranium-233 is a fissile isotope of uranium, bred from Thorium as part of the thorium fuel cycle. It has been used in a few nuclear reactors and has been proposed for much wider use as a nuclear fuel. It has a half-life of 160,000 years....
. The last, 233UF4
Uranium tetrafluoride
Uranium tetrafluoride is a green crystalline solid compound of uranium with an insignificant vapor pressure and very slight solubility in water. Uranium in its tetravalent state is very important in different technological processes...
was the result of breeding from thorium. Since this was an engineering test, the large, expensive breeding blanket of thorium salt was omitted in favor of neutron measurements.
In the MSRE, the heat from the reactor core was shed via a cooling system using air blowers and radiator
Radiator
Radiators are heat exchangers used to transfer thermal energy from one medium to another for the purpose of cooling and heating. The majority of radiators are constructed to function in automobiles, buildings, and electronics...
s. It is thought similar reactors could power high-efficiency heat engine
Heat engine
In thermodynamics, a heat engine is a system that performs the conversion of heat or thermal energy to mechanical work. It does this by bringing a working substance from a high temperature state to a lower temperature state. A heat "source" generates thermal energy that brings the working substance...
s such as gas turbine
Gas turbine
A gas turbine, also called a combustion turbine, is a type of internal combustion engine. It has an upstream rotating compressor coupled to a downstream turbine, and a combustion chamber in-between....
s.
The MSRE's piping, core vat and structural components were made from Hastelloy
Hastelloy
Hastelloy is the registered trademark name of Haynes International, Inc. The trademark is applied as the prefix name of a range of twenty two different highly corrosion-resistant metal alloys loosely grouped by the metallurgical industry under the material term “superalloys” or “high-performance...
-N and its moderator was a pyrolytic graphite
Nuclear Graphite
Nuclear graphite is any grade of graphite, usually electro-graphite, specifically manufactured for use as a moderator or reflector within nuclear reactors...
core. The fuel for the MSRE was LiF
Lithium fluoride
Lithium fluoride is an inorganic compound with the formula LiF. It is the lithium salt of hydrofluoric acid. This white solid is a simple ionic compound. Its structure is analogous to that of sodium chloride, but it is much less soluble in water. It is mainly used as a component of molten...
-BeF2
Beryllium fluoride
Beryllium fluoride is the inorganic compound with the formula BeF2. This white solid is the principal precursor for the manufacture of beryllium metal.-Structure and bonding:...
-ZrF4-UF4
Uranium tetrafluoride
Uranium tetrafluoride is a green crystalline solid compound of uranium with an insignificant vapor pressure and very slight solubility in water. Uranium in its tetravalent state is very important in different technological processes...
(65-30-5-0.1), the graphite core moderated
Neutron moderator
In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, thereby turning them into thermal neutrons capable of sustaining a nuclear chain reaction involving uranium-235....
it, and its secondary coolant
Coolant
A coolant is a fluid which flows through a device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, and chemically inert, neither causing nor...
was FLiBe
FLiBe
FLiBe is a mixture of lithium fluoride and beryllium fluoride . As a molten salt it is proposed as a nuclear reactor coolant, and two different mixtures were used in the Molten-Salt Reactor Experiment....
(2LiF-BeF2), it operated as hot as 650 °C and operated for the equivalent of about 1.5 years of full power operation.
The result promised to be a simple, reliable reactor. The purpose of the Molten-Salt Reactor Experiment was to demonstrate that some of the key features of the proposed molten-salt power reactor
Nuclear reactor
A nuclear reactor is a device to initiate and control a sustained nuclear chain reaction. Most commonly they are used for generating electricity and for the propulsion of ships. Usually heat from nuclear fission is passed to a working fluid , which runs through turbines that power either ship's...
s could be embodied in a practical reactor that could be operated safely and reliably and be maintained without excessive difficulty. For simplicity, it was to be a fairly small, one-fluid (i.e. non-breeding) reactor operating at 10 MW(t) or less, with heat rejection to the air via a secondary (fuel-free) salt.
Core
The Pyrolytic graphite core, grade CGB, also served as the moderatorNeutron moderator
In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, thereby turning them into thermal neutrons capable of sustaining a nuclear chain reaction involving uranium-235....
.
Before the MSRE development began, tests had shown that salt would not permeate graphite in which the pores were on the order of a micrometer. Graphite with the desired pore structure was available only in small, experimentally prepared pieces, however, and when a manufacturer set out to produce a new grade (CGB) to meet the MSRE requirements, difficulties were encountered.
Fuel/primary coolant
The fuel was 7LiF-BeF2-ZrF4-235UF4-232Th (70-23-5-1-1 mole %).This reactor could breed more of its 233U
Uranium-233
Uranium-233 is a fissile isotope of uranium, bred from Thorium as part of the thorium fuel cycle. It has been used in a few nuclear reactors and has been proposed for much wider use as a nuclear fuel. It has a half-life of 160,000 years....
fuel from thorium
Thorium
Thorium is a natural radioactive chemical element with the symbol Th and atomic number 90. It was discovered in 1828 and named after Thor, the Norse god of thunder....
. Thorium is at least four times as abundant as uranium in the Earth's crust and at least 500 times as abundant as uranium-235
Uranium-235
- References :* .* DOE Fundamentals handbook: Nuclear Physics and Reactor theory , .* A piece of U-235 the size of a grain of rice can produce energy equal to that contained in three tons of coal or fourteen barrels of oil. -External links:* * * one of the earliest articles on U-235 for the...
. Compared to conventional light-water reactors, this breeding had the potential to eliminate the difficulty and expense of uranium enrichment, as well as the need for fast breeder reactors to make plutonium
Plutonium
Plutonium is a transuranic radioactive chemical element with the chemical symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, forming a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation...
fuel from 238U
Uranium-238
Uranium-238 is the most common isotope of uranium found in nature. It is not fissile, but is a fertile material: it can capture a slow neutron and after two beta decays become fissile plutonium-239...
.
Keeping all the breeding and fuel as fluoride salts made it theoretically possible to combine the reactor core and breeding blanket in one fluid, by sculpting the moderator rods. Further, it appeared that the fluid salt would permit on-site chemical separation of the fuel and wastes.
By 1960
1960 in science
The year 1960 in science and technology involved some significant events, listed below.-Astronomy and space exploration:* March 14 - Jodrell Bank Observatory in England makes radio contact with the U.S...
a better understanding of fluoride salt based molten-salt reactors had emerged due to earlier molten salt reactor research for the Aircraft Reactor Experiment.
Fluoride
Fluoride
Fluoride is the anion F−, the reduced form of fluorine when as an ion and when bonded to another element. Both organofluorine compounds and inorganic fluorine containing compounds are called fluorides. Fluoride, like other halides, is a monovalent ion . Its compounds often have properties that are...
salts are strongly ionic
Ionic compound
In chemistry, an ionic compound is a chemical compound in which ions are held together in a lattice structure by ionic bonds. Usually, the positively charged portion consists of metal cations and the negatively charged portion is an anion or polyatomic ion. Ions in ionic compounds are held together...
, and when melted, are stable at high temperatures, low pressures, and high radiation flux
Radiation flux
Radiation flux is a measure of the flow of radiation from a given radioactive source.Radiation flux density is a related measure that adds area dimensions to the above definition - for example, radiation-flux/square-centimeter....
es. Low pressure stability requires less robust reactor vessels and increases reliability. The high reactivity of fluorine traps most fission reaction byproducts.
The fuel system was located in sealed cells, laid out for maintenance with long-handled tools through openings in the top shielding. A tank of LiF-BeF2 salt was used to flush the fuel circulating system before and after maintenance. In a cell adjacent to the reactor was a simple facility for bubbling gas through the fuel or flush salt: H2-HF
Hydrogen fluoride
Hydrogen fluoride is a chemical compound with the formula HF. This colorless gas is the principal industrial source of fluorine, often in the aqueous form as hydrofluoric acid, and thus is the precursor to many important compounds including pharmaceuticals and polymers . HF is widely used in the...
to remove oxide, F2
Fluorine
Fluorine is the chemical element with atomic number 9, represented by the symbol F. It is the lightest element of the halogen column of the periodic table and has a single stable isotope, fluorine-19. At standard pressure and temperature, fluorine is a pale yellow gas composed of diatomic...
to remove uranium as UF6
Uranium hexafluoride
Uranium hexafluoride , referred to as "hex" in the nuclear industry, is a compound used in the uranium enrichment process that produces fuel for nuclear reactors and nuclear weapons. It forms solid grey crystals at standard temperature and pressure , is highly toxic, reacts violently with water...
. Haubenreich and Engel, Robertson, and Lindauer provide more detailed descriptions of the reactor and processing plant.
Secondary coolant
The secondary salt was LiF-BeF2 (66–34 mole %).Pump
The bowl of the fuel pump was the surge space for the circulating loop, and here about 50 gal/min of fuel was sprayed into the gas space to allow xenonXenon
Xenon is a chemical element with the symbol Xe and atomic number 54. The element name is pronounced or . A colorless, heavy, odorless noble gas, xenon occurs in the Earth's atmosphere in trace amounts...
and krypton
Krypton
Krypton is a chemical element with the symbol Kr and atomic number 36. It is a member of Group 18 and Period 4 elements. A colorless, odorless, tasteless noble gas, krypton occurs in trace amounts in the atmosphere, is isolated by fractionally distilling liquified air, and is often used with other...
to escape from the salt. Removing the most significant neutron poison xenon-135
Xenon-135
Xenon-135 is an unstable isotope of xenon with a half-life of about 9.2 hours. 135Xe is a fission product of uranium and Xe-135 is the most powerful known neutron-absorbing nuclear poison , with a significant effect on nuclear reactor operation...
made the reactor safer and easier to restart. In solid-fuel reactors, on restart the 135Xe
Xenon-135
Xenon-135 is an unstable isotope of xenon with a half-life of about 9.2 hours. 135Xe is a fission product of uranium and Xe-135 is the most powerful known neutron-absorbing nuclear poison , with a significant effect on nuclear reactor operation...
in the fuel absorbs neutrons, followed by a sudden jump in reactivity as the 135Xe is burned out. Conventional reactors may have to wait hours until xenon-135 decays after shutting down and not immediately restarting (so-called iodine pit
Iodine pit
Iodine pit, also called iodine hole and xenon pit, is a temporary disabling of a nuclear reactor due to buildup of short-lived nuclear poisons in the core of a nuclear reactor. The main isotope responsible is xenon-135, mainly produced by natural decay of iodine-135. Iodine-135 is a weak neutron...
).
Also in the pump bowl was a port through which salt samples could be taken or capsules of concentrated fuel-enriching salt (UF4-LiF or PuF3
Plutonium(III) fluoride
Plutonium fluoride or plutonium trifluoride is the chemical compound composed of plutonium and fluorine with the formula PuF3. It forms violet crystals...
) could be introduced.
Air-cooled heat exchangers
At the time, the high temperatures were seen almost as a disadvantage, because they hampered use of conventional steam turbineSteam turbine
A steam turbine is a mechanical device that extracts thermal energy from pressurized steam, and converts it into rotary motion. Its modern manifestation was invented by Sir Charles Parsons in 1884....
s. Now, such temperatures are seen as an opportunity to use high-efficiency gas turbine
Gas turbine
A gas turbine, also called a combustion turbine, is a type of internal combustion engine. It has an upstream rotating compressor coupled to a downstream turbine, and a combustion chamber in-between....
s. After two months of high-power operation, the reactor was down for 3 months because of the failure of one of the main cooling blowers.
Neutronics and thermal-hydraulics
The reactor experienced stable neutronic operation. If either temperatures increased, or bubbles formed, the volume of the fluid fuel salts would increase and some fluid fuel salts would be forced out of the core, thereby reduce the reactivity.The MSRE development program did not include reactor physics
Nuclear reactor physics
Nuclear reactor physics is the branch of science that deals with the study and application of chain reaction to induce controlled rate of fission for energy in reactors....
experiments or heat transfer
Heat transfer
Heat transfer is a discipline of thermal engineering that concerns the exchange of thermal energy from one physical system to another. Heat transfer is classified into various mechanisms, such as heat conduction, convection, thermal radiation, and phase-change transfer...
measurements. There was enough latitude in the MSRE that deviations from predictions would not compromise safety or accomplishment of the objectives of the MSRE.
Building grounds
Construction of the primary system components and alterations of the old Aircraft Reactor Experiment building (which had been partly remodeled for a proposed 60-MW(t) aircraft reactor) were started in 1962. Installation of the salt systems was completed in mid-1964. ORNL was responsible for quality assurance, planning, and management of construction. The primary systems were installed by ORNL personnel; subcontractors modified the building and installed ancillary systems.Structural alloy Hastelloy-N
A low chromiumChromium
Chromium is a chemical element which has the symbol Cr and atomic number 24. It is the first element in Group 6. It is a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point. It is also odorless, tasteless, and malleable...
, nickel
Nickel
Nickel is a chemical element with the chemical symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel belongs to the transition metals and is hard and ductile...
–molybdenum
Molybdenum
Molybdenum , is a Group 6 chemical element with the symbol Mo and atomic number 42. The name is from Neo-Latin Molybdaenum, from Ancient Greek , meaning lead, itself proposed as a loanword from Anatolian Luvian and Lydian languages, since its ores were confused with lead ores...
alloy, Hastelloy
Hastelloy
Hastelloy is the registered trademark name of Haynes International, Inc. The trademark is applied as the prefix name of a range of twenty two different highly corrosion-resistant metal alloys loosely grouped by the metallurgical industry under the material term “superalloys” or “high-performance...
-N, was used in the MSRE and proved compatible with the fluoride salts FLiBe
FLiBe
FLiBe is a mixture of lithium fluoride and beryllium fluoride . As a molten salt it is proposed as a nuclear reactor coolant, and two different mixtures were used in the Molten-Salt Reactor Experiment....
and FLiNaK
FLiNaK
FLiNaK is the name of the ternary eutectic alkaline metal fluoride salt mixture LiF-NaF-KF . It has a melting point of 454 °C and a boiling point of 1570 °C. It is used as electrolyte for the electroplating of refractory metals and compounds like titanium, tantalum, hafnium, zirconium and their...
. All metal parts contacting salt were made of Hastelloy-N.
The choice of Hastelloy-N for the MSRE was on the basis of the promising results of tests at aircraft nuclear propulsion
Nuclear propulsion
Nuclear propulsion includes a wide variety of propulsion methods that fulfil the promise of the Atomic Age by using some form of nuclear reaction as their primary power source.- Surface ships and submarines :...
conditions and the availability of much of the required metallurgical data. Development for the MSRE generated the further data required for ASME code approval. It also included preparation of standards for Hastelloy-N procurement and for component fabrication. Almost 200,000 lb (90 Mg) in a variety of shapes of material for the MSRE was produced commercially. Requests for bids on component fabrication went to several companies in the nuclear fabrication industry, but all declined to submit lump-sum bids because of lack of experience with the new alloy
Alloy
An alloy is a mixture or metallic solid solution composed of two or more elements. Complete solid solution alloys give single solid phase microstructure, while partial solutions give two or more phases that may or may not be homogeneous in distribution, depending on thermal history...
. Consequently all major components were fabricated in U.S. Atomic Energy Commission-owned shops at Oak Ridge
Oak Ridge, Tennessee
Oak Ridge is a city in Anderson and Roane counties in the eastern part of the U.S. state of Tennessee, about west of Knoxville. Oak Ridge's population was 27,387 at the 2000 census...
and Paducah
Paducah, Kentucky
Paducah is the largest city in Kentucky's Jackson Purchase Region and the county seat of McCracken County, Kentucky, United States. It is located at the confluence of the Tennessee River and the Ohio River, halfway between the metropolitan areas of St. Louis, Missouri, to the west and Nashville,...
.
At the time that design stresses were set for the MSRE, the data that was available indicated that the strength
Strength of materials
In materials science, the strength of a material is its ability to withstand an applied stress without failure. The applied stress may be tensile, compressive, or shear. Strength of materials is a subject which deals with loads, deformations and the forces acting on a material. A load applied to a...
and creep rate
Creep (deformation)
In materials science, creep is the tendency of a solid material to slowly move or deform permanently under the influence of stresses. It occurs as a result of long term exposure to high levels of stress that are below the yield strength of the material....
of Hastelloy-N were hardly affected by irradiation
Irradiation
Irradiation is the process by which an object is exposed to radiation. The exposure can originate from various sources, including natural sources. Most frequently the term refers to ionizing radiation, and to a level of radiation that will serve a specific purpose, rather than radiation exposure to...
. After the construction was well along, the stress-rupture life and fracture
Fracture
A fracture is the separation of an object or material into two, or more, pieces under the action of stress.The word fracture is often applied to bones of living creatures , or to crystals or crystalline materials, such as gemstones or metal...
strain were found to be drastically reduced by thermal neutron irradiation. The MSRE stresses were reanalyzed, and it was concluded that the reactor would have adequate life to reach its goals. At the same time a program was launched to improve the resistance of Hastelloy-N to the embrittlement
Embrittlement
Embrittlement is a loss of ductility of a material, making it brittle. Various materials have different mechanisms of embrittlement.* Hydrogen embrittlement is the effect of hydrogen absorption on some metals and alloys....
.
An out-of-pile corrosion
Corrosion
Corrosion is the disintegration of an engineered material into its constituent atoms due to chemical reactions with its surroundings. In the most common use of the word, this means electrochemical oxidation of metals in reaction with an oxidant such as oxygen...
test program was carried out for Hastelloy-N which indicated extremely low corrosion rates at MSRE conditions. Capsules exposed in the Materials Testing Reactor showed that salt fission power densities
Power density
Power density is the amount of power per unit volume....
of more than 200 W/cm3 had no adverse effects on compatibility of fuel salt, Hastelloy-N, and graphite. Fluorine
Fluorine
Fluorine is the chemical element with atomic number 9, represented by the symbol F. It is the lightest element of the halogen column of the periodic table and has a single stable isotope, fluorine-19. At standard pressure and temperature, fluorine is a pale yellow gas composed of diatomic...
gas was found to be produced by radiolysis
Radiolysis
Radiolysis is the dissociation of molecules by nuclear radiation. It is the cleavage of one or several chemical bonds resulting from exposure to high-energy flux...
of frozen salts, but only at temperatures below about 100 °C.
Components that were developed especially for the MSRE included flange
Flange
A flange is an external or internal ridge, or rim , for strength, as the flange of an iron beam such as an I-beam or a T-beam; or for attachment to another object, as the flange on the end of a pipe, steam cylinder, etc., or on the lens mount of a camera; or for a flange of a rail car or tram wheel...
s for 5 inches (127 mm) lines carrying molten salt, freeze valves (an air-cooled section where salt could be frozen and thawed), flexible control rod
Control rod
A control rod is a rod made of chemical elements capable of absorbing many neutrons without fissioning themselves. They are used in nuclear reactors to control the rate of fission of uranium and plutonium...
s to operate in thimbles at 1200 °F (650 °C), and the fuel sampler-enricher. Centrifugal pump
Centrifugal pump
A centrifugal pump is a rotodynamic pump that uses a rotating impeller to create flow by the addition of energy to a fluid. Centrifugal pumps are commonly used to move liquids through piping...
s were developed similar to those used successfully in the aircraft reactor program, but with provisions for remote maintenance, and including a spray system for xenon removal. Remote maintenance considerations pervaded the MSRE design, and developments included devices for remotely cutting and brazing
Brazing
Brazing is a metal-joining process whereby a filler metal is heated above and distributed between two or more close-fitting parts by capillary action. The filler metal is brought slightly above its melting temperature while protected by a suitable atmosphere, usually a flux...
together 1½-inch pipe, removable heater-insulation units, and equipment for removing specimens of metal and graphite from the core.
Development and construction timeline
Most of the MSRE effort from 1960 through 1964 was devoted to design, development, and construction of the MSRE. Production and further testing of graphite and Hastelloy-N, both in-pile and out, were major development activities. Others included work on reactor chemistryNuclear chemistry
Nuclear chemistry is the subfield of chemistry dealing with radioactivity, nuclear processes and nuclear properties.It is the chemistry of radioactive elements such as the actinides, radium and radon together with the chemistry associated with equipment which are designed to perform nuclear...
, development of fabrication techniques for Hastelloy-N, development of reactor components, and remote-maintenance planning and preparations.
Operation
The MSRE operated for 5 years. The salt was loaded in 1964 and nuclear operation ended in December, 1969, and all of the objectives of the experiment were achieved during this period.Checkout and prenuclear tests included 1,000 hours of circulation of flush salt and fuel carrier salt. Nuclear testing of the MSRE began in June 1965, with the addition of enriched 235U as UF4-LiF eutectic to the carrier salt to make the reactor critical. After zero-power experiments to measure rod worth and reactivity coefficients, the reactor was shut down and final preparations made for power operation. Power ascension was delayed when vapors from oil
Oil
An oil is any substance that is liquid at ambient temperatures and does not mix with water but may mix with other oils and organic solvents. This general definition includes vegetable oils, volatile essential oils, petrochemical oils, and synthetic oils....
that had leaked into the fuel pump were polymerized by the radioactive offgas and plugged gas filters and valves. Maximum power, which was limited to 7.4 MW(t) by the capability of the heat-rejection system, was reached in May 1966.
After two months of high-power operation, the reactor was down for three months because of the failure of one of the main cooling blowers. Some further delays were encountered because of offgas line plugging, but by the end of 1966 most of the startup problems were behind. During the next 15 months, the reactor was critical 80% of the time, with runs of 1, 3, and 6 months that were uninterrupted by a fuel drain. By March 1968, the original objectives of the MSRE had been accomplished, and nuclear operation with 235U was concluded.
By this time, ample 233U had become available, so the MSRE program was extended to include substitution of 233U for the uranium in the fuel salt, and operation to observe the new nuclear characteristics. Using the on-site processing equipment the flush salt and fuel salt were fluorinated to recover the uranium in them as UF6. 233UF4-LiF eutectic was then added to the carrier salt, and in October 1968, the MSRE became the world's first reactor to operate on 233U.
The 233U zero-power experiments and dynamics tests confirmed the predicted neutron
Neutron
The neutron is a subatomic hadron particle which has the symbol or , no net electric charge and a mass slightly larger than that of a proton. With the exception of hydrogen, nuclei of atoms consist of protons and neutrons, which are therefore collectively referred to as nucleons. The number of...
ic characteristics. An unexpected consequence of processing the salt was that its physical properties were altered slightly so that more than the usual amount of gas was entrained from the fuel pump into the circulating loop. The circulating gas and the power fluctuations that accompanied it were eliminated by operating the fuel pump at slightly lower speed. Operation at high power for several months permitted accurate measurement of the capture
Neutron capture
Neutron capture is a kind of nuclear reaction in which an atomic nucleus collides with one or more neutrons and they merge to form a heavier nucleus. Since neutrons have no electric charge they can enter a nucleus more easily than positively charged protons, which are repelled...
-to-fission
Nuclear fission
In nuclear physics and nuclear chemistry, nuclear fission is a nuclear reaction in which the nucleus of an atom splits into smaller parts , often producing free neutrons and photons , and releasing a tremendous amount of energy...
ratio, for 233U in this reactor, completing the objectives of the 233U operation.
In the concluding months of operation, xenon stripping, deposition of fission products, and tritium
Tritium
Tritium is a radioactive isotope of hydrogen. The nucleus of tritium contains one proton and two neutrons, whereas the nucleus of protium contains one proton and no neutrons...
behavior were investigated. The feasibility of using plutonium
Plutonium
Plutonium is a transuranic radioactive chemical element with the chemical symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, forming a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation...
in molten-salt reactors was emphasized by adding PuF3 as makeup fuel during this period.
After the final shutdown in December 1969, the reactor was left in standby
Standby
Standby may refer to:*Standby , a list in which passengers may request to be placed on to request an earlier or more convenient flight....
for nearly a year. A limited examination program was then carried out, including a moderator bar from the core, a control rod
Control rod
A control rod is a rod made of chemical elements capable of absorbing many neutrons without fissioning themselves. They are used in nuclear reactors to control the rate of fission of uranium and plutonium...
thimble
Thimble
A thimble is a small hard pitted cup worn for protection on the finger that pushes the needle in sewing.The earliest known thimble was Roman and was found at Pompeii. Made of bronze, its creation has been dated to the 1st century AD...
, heat exchanger
Heat exchanger
A heat exchanger is a piece of equipment built for efficient heat transfer from one medium to another. The media may be separated by a solid wall, so that they never mix, or they may be in direct contact...
tubes, parts from the fuel pump bowl, and a freeze valve that had developed a leak during the final reactor shutdown. The radioactive systems were then closed to await ultimate disposal.
Results
The broadest and perhaps most important conclusion from the MSRE experience was that a molten salt fueled reactor concept was viable. It ran for considerable periods of time, yielding valuable information, and maintenance was accomplished safely and without excessive delay.The MSRE confirmed expectations and predictions. For example, it was demonstrated that: the fuel salt was immune to radiation damage, the graphite was not attacked by the fuel salt, and the corrosion of Hastelloy-N was negligible. Noble gases were stripped from the fuel salt by a spray system, reducing the 135Xe poisoning by a factor of about 6. The bulk of the fission product
Fission product
Nuclear fission products are the atomic fragments left after a large atomic nucleus fissions. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons and a large release of energy in the form of heat , gamma rays and neutrinos. The...
elements remained stable in the salt. Additions of uranium and plutonium to the salt during operation were quick and uneventful, and recovery of uranium by fluorination was efficient. The neutronics, including critical loading, reactivity coefficients, dynamics, and long-term reactivity changes, agreed with prior calculations.
In other areas, the operation resulted in improved data or reduced uncertainties. The 233U capture-to-fission
Nuclear fission
In nuclear physics and nuclear chemistry, nuclear fission is a nuclear reaction in which the nucleus of an atom splits into smaller parts , often producing free neutrons and photons , and releasing a tremendous amount of energy...
ratio in a typical MSR neutron spectrum is an example of basic data that was improved. The effect of fissioning on the redox potential of the fuel salt was resolved. The deposition of some elements (“noble metals”) was expected, but the MSRE provided quantitative data on relative deposition on graphite, metal, and liquid-gas interfaces. Heat transfer coefficients measured in the MSRE agreed with conventional design calculations and did not change over the life of the reactor. Limiting oxygen in the salt proved effective, and the tendency of fission products to be dispersed from contaminated equipment during maintenance was low.
Operation of the MSRE provided insights into the problem of tritium
Tritium
Tritium is a radioactive isotope of hydrogen. The nucleus of tritium contains one proton and two neutrons, whereas the nucleus of protium contains one proton and no neutrons...
in a molten-salt reactor. It was observed that about 6–10% of the calculated 54 Ci/day (2.0 TBq) production diffused out of the fuel system into the containment cell atmosphere and another 6–10% reached the air through the heat removal system. The fact that these fractions were not higher indicated that something partially negated the transfer of tritium through hot metals.
One unexpected finding was shallow, inter-granular cracking
Intergranular fracture
An intergranular fracture is a fracture that follows the grains of the material. If the material has multiple lattice organizations, when one lattice ends and another begins, the fracture changes direction to follow the new grain. This results in a fairly jagged looking fracture with bumpy...
in all metal surfaces exposed to the fuel salt. The cause of the embrittlement was tellurium - a fission product generated in the fuel. This was first noted in the specimens that were removed from the core at intervals during the reactor operation. Post-operation examination of pieces of a control-rod thimble, heat-exchanger tubes, and pump bowl parts revealed the ubiquity of the cracking and emphasized its importance to the MSR concept. The crack growth was rapid enough to become a problem over the planned thirty-year life of a follow-on thorium breeder reactor. This cracking could be reduced by adding small amounts of niobium
Niobium
Niobium or columbium , is a chemical element with the symbol Nb and atomic number 41. It's a soft, grey, ductile transition metal, which is often found in the pyrochlore mineral, the main commercial source for niobium, and columbite...
to the Hastelloy-N.
Decommissioning
After shutdown the salt was believed to be in long-term safe storage, but beginning in the mid-1980s, there was concern that radioactivity was migrating through the system. Sampling in 1994 revealed concentrations of uranium that created a potential for a nuclear criticality accidentCriticality accident
A criticality accident, sometimes referred to as an excursion or a power excursion, is an accidental increase of nuclear chain reactions in a fissile material, such as enriched uranium or plutonium...
, as well as a potentially dangerous build-up of fluorine
Fluorine
Fluorine is the chemical element with atomic number 9, represented by the symbol F. It is the lightest element of the halogen column of the periodic table and has a single stable isotope, fluorine-19. At standard pressure and temperature, fluorine is a pale yellow gas composed of diatomic...
gas — the environment above the solidified salt is approximately one atmosphere of fluorine. The ensuing decontamination and decommissioning project was called "the most technically challenging" activity assigned to Bechtel Jacobs
Bechtel Jacobs
Bechtel Jacobs Company LLC is a limited liability company owned by Bechtel and Jacobs Engineering Group that serves as the primary contractor to the U.S...
under its environmental management contract with the U.S. Department of Energy's Oak Ridge Operations organization. In 2003, the MSRE cleanup project was estimated at about $130 million, with decommissioning expected to be completed in 2009.
A detailed description of potential decommissioning processes is described here.; uranium is to be removed from the fuel as the hexafluoride by adding excess fluorine, and plutonium as the plutonium dioxide
Plutonium dioxide
Plutonium oxide is the chemical compound with the formula PuO2. This high melting point solid is a principal compound of plutonium. It can vary in color from yellow to olive green, depending on the particle size, temperature and method of production....
by adding sodium carbonate
Sodium carbonate
Sodium carbonate , Na2CO3 is a sodium salt of carbonic acid. It most commonly occurs as a crystalline heptahydrate, which readily effloresces to form a white powder, the monohydrate. Sodium carbonate is domestically well-known for its everyday use as a water softener. It can be extracted from the...
.
See also
- ThoriumThoriumThorium is a natural radioactive chemical element with the symbol Th and atomic number 90. It was discovered in 1828 and named after Thor, the Norse god of thunder....
- Thorium fuel cycleThorium fuel cycleThe thorium fuel cycle is a nuclear fuel cycle that uses the naturally abundant isotope of thorium, , as the fertile material. In the reactor, is transmuted into the fissile artificial uranium isotope which is the nuclear fuel. Unlike natural uranium, natural thorium contains only trace amounts...
- Liquid fluoride thorium reactorLiquid fluoride thorium reactorThe liquid fluoride thorium reactor is a thermal breeder reactor which uses the thorium fuel cycle in a fluoride-based molten salt fuel to achieve high operating temperatures at atmospheric pressure....
- Molten salt reactorMolten salt reactorA molten salt reactor is a type of nuclear fission reactor in which the primary coolant, or even the fuel itself is a molten salt mixture...
- Fuji MSR
- From Thorium: A Nuclear Waste Burning Liquid Salt Thorium Reactor VIDEO. (Google techtalk, 2009-07-20, Kirk Sorensen)