Photometer
Encyclopedia
In its widest sense, a photometer is an instrument for measuring light intensity or optical properties of solutions or surfaces. Photometers are used to measure:
was done by estimation by the eye. The relative luminous flux
of a source was compared with a standard source. The photometer is placed such that the illuminance from the source being investigated is equal to that of the standard source as equal illuminance can be judged by the eye. The relative luminous fluxes can then be calculated as the illuminance decreases proportionally to the inverse square of distance. A standard example of such a photometer consists of a piece of paper with an oil spot on it that makes the paper there slightly more transparent. When the spot is not visible from either side, the illuminance from the two sides is equal.
s, photodiode
s or photomultiplier
s. To analyze the light, the photometer may measure the light after it has passed through a filter
or through a monochromator
for determination at defined wavelength
s or for analysis of the spectral distribution
of the light.
s rather than incoming flux
. The operating principles are the same but the results are given in units such as photons/cm2 or photons·cm−2·sr−1 rather than W/cm2 or W·cm−2·sr−1.
Due to their individual photon counting nature, these instruments are limited to observations where the irradiance is low. The irradiance is limited by the time resolution of its associated detector readout electronics. With current technology this is in the megahertz range. The maximum irradiance is also limited by the throughput and gain parameters of the detector itself.
The light sensing element in photon counting devices in NIR, visible and ultrviolet wavelengths is a photomultiplier to achieve sufficient sensitivity.
In airborne and space-based remote sensing
such photon counters are used at the upper reaches of the electromagnetic spectrum
such as the X-ray
to far ultraviolet. This is usually due to the lower radiant intensity of the objects being measured as well as the difficulty of measuring light at higher energies using its particle-like nature as compared to the wavelike nature of light at lower frequencies. Conversely, radiometers are typically used for remote sensing from the visible, infrared
though radio frequency
range.
in photography
. In modern camera
s, the photometer is usually built in. As the illumination of different parts of the picture varies, advanced photometers measure the light intensity in different parts of the potential picture and use an algorithm to determine the most suitable exposure for the final picture, adapting the algorithm to the type of picture intended(see Metering mode
). Historically, a photometer was separate from the camera. The advanced photometers then could be used either to measure the light from the potential picture as a whole, to measure from elements of the picture to ascertain that the most important parts of the picture are optimally exposed, or to measure the incident light to the scene with an integrating adapter.
and analytical chemistry
. Absorption photometers for work in aqueous solution work in the ultraviolet and visible ranges, from wavelength around 240 nm up to 750 nm.
The principle of spectrophotometers and filter photometers is that (as far as possible) monochromatic light is allowed to pass through a container (cell) with optically flat windows containing the solution. It then reaches a light detector, that measures the intensity of the light compared to the intensity after passing through an identical cell with the same solvent but without the coloured substance. From the ratio between the light intensities, knowing the capacity of the coloured substance to absorb light (the absorbancy of the coloured substance, or the photon cross section area of the molecules of the coloured substance at a given wavelength), it is possible to calculate the concentration of the substance using Beer's law.
Two types of photometers are used: spectrophotometer and filter
photometer. In spectrophotometers a monochromator (with prism
or with grating
) is used to obtain monochromatic light of one defined wavelength. In filter photometers, optical filters are used to give the monochromatic light. Spectrophotometers can thus easily be set to measure the absorbance at different wavelengths, and they can also be used to scan the spectrum of the absorbing substance. They are in this way more flexible than filter photometers, also give a higher optical purity of the analyzing light, and therefore they are preferably used for research purposes. Filter photometers are cheaper, robuster and easier to use and therefore they are used for routine analysis. Photometers for microtiter plate
s are filter photometers.
is either performed in the gaseous phase (for volatile substances) or with the substances pressed into tablets together with salts that are transparent in the infrared range. Potassium bromide
(KBr) is commonly used for this purpose. The substance to be tested is thoroughly mixed with specially purified KBr and pressed into a transparent tablet, that is placed in the beam of light. The analysis of the wavelength dependence is generally not done using a monochromator as it is in UV-Vis, but with the use of an interferometer. The interference pattern can be analyzed using a Fourier transform
algorithm
. In this way, the whole wavelength range can be analyzed simultaneously, saving time, and an interferometer is also less expensive than a monochromator. The light absorbed in the infrared region does not correspond to electronic excitation of the substance studied, but rather to different kinds of vibrational excitation. The vibrational excitations are characteristic of different groups in a molecule, that can in this way be identified. The infrared spectrum typically has very narrow absorption lines, which makes them unsuited for quantitative analysis but gives very detailed information about the molecules. The frequencies of the different modes of vibration varies with isotope, and therefore different isotopes give different peaks. This makes it possible also to study the isotopic composition of a sample with infrared spectrophotometry.
Article partly based on the corresponding article in Swedish Wikipedia
- IlluminanceIlluminanceIn photometry, illuminance is the total luminous flux incident on a surface, per unit area. It is a measure of the intensity of the incident light, wavelength-weighted by the luminosity function to correlate with human brightness perception. Similarly, luminous emittance is the luminous flux per...
- IrradianceIrradianceIrradiance is the power of electromagnetic radiation per unit area incident on a surface. Radiant emittance or radiant exitance is the power per unit area radiated by a surface. The SI units for all of these quantities are watts per square meter , while the cgs units are ergs per square centimeter...
- Light absorption
- Scattering of lightScatteringScattering is a general physical process where some forms of radiation, such as light, sound, or moving particles, are forced to deviate from a straight trajectory by one or more localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of...
- Reflection of light
- FluorescenceFluorescenceFluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation of a different wavelength. It is a form of luminescence. In most cases, emitted light has a longer wavelength, and therefore lower energy, than the absorbed radiation...
- PhosphorescencePhosphorescencePhosphorescence is a specific type of photoluminescence related to fluorescence. Unlike fluorescence, a phosphorescent material does not immediately re-emit the radiation it absorbs. The slower time scales of the re-emission are associated with "forbidden" energy state transitions in quantum...
- LuminescenceLuminescenceLuminescence is emission of light by a substance not resulting from heat; it is thus a form of cold body radiation. It can be caused by chemical reactions, electrical energy, subatomic motions, or stress on a crystal. This distinguishes luminescence from incandescence, which is light emitted by a...
History
Before electronic light sensitive elements were developed, photometryPhotometry (optics)
Photometry is the science of the measurement of light, in terms of its perceived brightness to the human eye. It is distinct from radiometry, which is the science of measurement of radiant energy in terms of absolute power; rather, in photometry, the radiant power at each wavelength is weighted by...
was done by estimation by the eye. The relative luminous flux
Luminous flux
In photometry, luminous flux or luminous power is the measure of the perceived power of light. It differs from radiant flux, the measure of the total power of light emitted, in that luminous flux is adjusted to reflect the varying sensitivity of the human eye to different wavelengths of...
of a source was compared with a standard source. The photometer is placed such that the illuminance from the source being investigated is equal to that of the standard source as equal illuminance can be judged by the eye. The relative luminous fluxes can then be calculated as the illuminance decreases proportionally to the inverse square of distance. A standard example of such a photometer consists of a piece of paper with an oil spot on it that makes the paper there slightly more transparent. When the spot is not visible from either side, the illuminance from the two sides is equal.
Principle of photometers
Most photometers detect the light with photoresistorPhotoresistor
A photoresistor or light dependent resistor is a resistor whose resistance decreases with increasing incident light intensity. It can also be referred to as a photoconductor or CdS device, from "cadmium sulfide," which is the material from which the device is made and that actually exhibits the...
s, photodiode
Photodiode
A photodiode is a type of photodetector capable of converting light into either current or voltage, depending upon the mode of operation.The common, traditional solar cell used to generateelectric solar power is a large area photodiode....
s or photomultiplier
Photomultiplier
Photomultiplier tubes , members of the class of vacuum tubes, and more specifically phototubes, are extremely sensitive detectors of light in the ultraviolet, visible, and near-infrared ranges of the electromagnetic spectrum...
s. To analyze the light, the photometer may measure the light after it has passed through a filter
Filter (optics)
Optical filters are devices which selectively transmit light of different wavelengths, usually implemented as plane glass or plastic devices in the optical path which are either dyed in the mass or have interference coatings....
or through a monochromator
Monochromator
A monochromator is an optical device that transmits a mechanically selectable narrow band of wavelengths of light or other radiation chosen from a wider range of wavelengths available at the input...
for determination at defined wavelength
Wavelength
In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats.It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings, and is a...
s or for analysis of the spectral distribution
Spectrum
A spectrum is a condition that is not limited to a specific set of values but can vary infinitely within a continuum. The word saw its first scientific use within the field of optics to describe the rainbow of colors in visible light when separated using a prism; it has since been applied by...
of the light.
Photon counting
Some photometers measure light by counting individual photonPhoton
In physics, a photon is an elementary particle, the quantum of the electromagnetic interaction and the basic unit of light and all other forms of electromagnetic radiation. It is also the force carrier for the electromagnetic force...
s rather than incoming flux
Radiant flux
In radiometry, radiant flux or radiant power is the measure of the total power of electromagnetic radiation...
. The operating principles are the same but the results are given in units such as photons/cm2 or photons·cm−2·sr−1 rather than W/cm2 or W·cm−2·sr−1.
Due to their individual photon counting nature, these instruments are limited to observations where the irradiance is low. The irradiance is limited by the time resolution of its associated detector readout electronics. With current technology this is in the megahertz range. The maximum irradiance is also limited by the throughput and gain parameters of the detector itself.
The light sensing element in photon counting devices in NIR, visible and ultrviolet wavelengths is a photomultiplier to achieve sufficient sensitivity.
In airborne and space-based remote sensing
Remote sensing
Remote sensing is the acquisition of information about an object or phenomenon, without making physical contact with the object. In modern usage, the term generally refers to the use of aerial sensor technologies to detect and classify objects on Earth by means of propagated signals Remote sensing...
such photon counters are used at the upper reaches of the electromagnetic spectrum
Electromagnetic spectrum
The electromagnetic spectrum is the range of all possible frequencies of electromagnetic radiation. The "electromagnetic spectrum" of an object is the characteristic distribution of electromagnetic radiation emitted or absorbed by that particular object....
such as the X-ray
X-ray
X-radiation is a form of electromagnetic radiation. X-rays have a wavelength in the range of 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz and energies in the range 120 eV to 120 keV. They are shorter in wavelength than UV rays and longer than gamma...
to far ultraviolet. This is usually due to the lower radiant intensity of the objects being measured as well as the difficulty of measuring light at higher energies using its particle-like nature as compared to the wavelike nature of light at lower frequencies. Conversely, radiometers are typically used for remote sensing from the visible, infrared
Infrared
Infrared light is electromagnetic radiation with a wavelength longer than that of visible light, measured from the nominal edge of visible red light at 0.74 micrometres , and extending conventionally to 300 µm...
though radio frequency
Radio frequency
Radio frequency is a rate of oscillation in the range of about 3 kHz to 300 GHz, which corresponds to the frequency of radio waves, and the alternating currents which carry radio signals...
range.
Photography
Photometers are used to determine the correct exposureExposure (photography)
In photography, exposure is the total amount of light allowed to fall on the photographic medium during the process of taking a photograph. Exposure is measured in lux seconds, and can be computed from exposure value and scene luminance over a specified area.In photographic jargon, an exposure...
in photography
Photography
Photography is the art, science and practice of creating durable images by recording light or other electromagnetic radiation, either electronically by means of an image sensor or chemically by means of a light-sensitive material such as photographic film...
. In modern camera
Camera
A camera is a device that records and stores images. These images may be still photographs or moving images such as videos or movies. The term camera comes from the camera obscura , an early mechanism for projecting images...
s, the photometer is usually built in. As the illumination of different parts of the picture varies, advanced photometers measure the light intensity in different parts of the potential picture and use an algorithm to determine the most suitable exposure for the final picture, adapting the algorithm to the type of picture intended(see Metering mode
Metering mode
In photography, the metering mode refers to the way in which a camera determines the exposure.- Examples of metering modes :Cameras generally allow the user to select between spot, center-weighted average, or multi-zone metering modes....
). Historically, a photometer was separate from the camera. The advanced photometers then could be used either to measure the light from the potential picture as a whole, to measure from elements of the picture to ascertain that the most important parts of the picture are optimally exposed, or to measure the incident light to the scene with an integrating adapter.
Visible light reflectance photometry
A reflectance photometer measures the reflectance of a surface as a function of wavelength. The surface is illuminated with white light, and the reflected light is measured after passing through a monochromator. This type of measurement has mainly practical applications, for instance in the paint industry to characterize the colour of a surface objectively.UV and visible light transmission photometry
These are optical instruments for measurement of the absorption of light of a given wavelength (or a given range of wavelengths) of coloured substances in solution. From the light absorption, Beer's law makes it possible to calculate the concentration of the coloured substance in the solution. Due to its wide range of application and its reliability and robustness, the photometer has become one of the principal instruments in biochemistryBiochemistry
Biochemistry, sometimes called biological chemistry, is the study of chemical processes in living organisms, including, but not limited to, living matter. Biochemistry governs all living organisms and living processes...
and analytical chemistry
Analytical chemistry
Analytical chemistry is the study of the separation, identification, and quantification of the chemical components of natural and artificial materials. Qualitative analysis gives an indication of the identity of the chemical species in the sample and quantitative analysis determines the amount of...
. Absorption photometers for work in aqueous solution work in the ultraviolet and visible ranges, from wavelength around 240 nm up to 750 nm.
The principle of spectrophotometers and filter photometers is that (as far as possible) monochromatic light is allowed to pass through a container (cell) with optically flat windows containing the solution. It then reaches a light detector, that measures the intensity of the light compared to the intensity after passing through an identical cell with the same solvent but without the coloured substance. From the ratio between the light intensities, knowing the capacity of the coloured substance to absorb light (the absorbancy of the coloured substance, or the photon cross section area of the molecules of the coloured substance at a given wavelength), it is possible to calculate the concentration of the substance using Beer's law.
Two types of photometers are used: spectrophotometer and filter
Filter (optics)
Optical filters are devices which selectively transmit light of different wavelengths, usually implemented as plane glass or plastic devices in the optical path which are either dyed in the mass or have interference coatings....
photometer. In spectrophotometers a monochromator (with prism
Prism (optics)
In optics, a prism is a transparent optical element with flat, polished surfaces that refract light. The exact angles between the surfaces depend on the application. The traditional geometrical shape is that of a triangular prism with a triangular base and rectangular sides, and in colloquial use...
or with grating
Grating
A grating is any regularly spaced collection of essentially identical, parallel, elongated elements. Gratings usually consist of a single set of elongated elements, but can consist of two sets, in which case the second set is usually perpendicular to the first...
) is used to obtain monochromatic light of one defined wavelength. In filter photometers, optical filters are used to give the monochromatic light. Spectrophotometers can thus easily be set to measure the absorbance at different wavelengths, and they can also be used to scan the spectrum of the absorbing substance. They are in this way more flexible than filter photometers, also give a higher optical purity of the analyzing light, and therefore they are preferably used for research purposes. Filter photometers are cheaper, robuster and easier to use and therefore they are used for routine analysis. Photometers for microtiter plate
Microtiter plate
A Microtiter plate or microplate or microwell plate, is a flat plate with multiple "wells" used as small test tubes. The microplate has become a standard tool in analytical research and clinical diagnostic testing laboratories...
s are filter photometers.
Infrared light transmission photometry
Spectrophotometry in infrared light is mainly used to study structure of substances, as given groups give absorption at defined wavelengths. Measurement in aqueous solution is generally not possible, as water absorbs infrared light strongly in some wavelength ranges. Therefore, infrared spectroscopySpectroscopy
Spectroscopy is the study of the interaction between matter and radiated energy. Historically, spectroscopy originated through the study of visible light dispersed according to its wavelength, e.g., by a prism. Later the concept was expanded greatly to comprise any interaction with radiative...
is either performed in the gaseous phase (for volatile substances) or with the substances pressed into tablets together with salts that are transparent in the infrared range. Potassium bromide
Potassium bromide
Potassium bromide is a salt, widely used as an anticonvulsant and a sedative in the late 19th and early 20th centuries, with over-the-counter use extending to 1975 in the United States. Its action is due to the bromide ion...
(KBr) is commonly used for this purpose. The substance to be tested is thoroughly mixed with specially purified KBr and pressed into a transparent tablet, that is placed in the beam of light. The analysis of the wavelength dependence is generally not done using a monochromator as it is in UV-Vis, but with the use of an interferometer. The interference pattern can be analyzed using a Fourier transform
Fourier transform
In mathematics, Fourier analysis is a subject area which grew from the study of Fourier series. The subject began with the study of the way general functions may be represented by sums of simpler trigonometric functions...
algorithm
Algorithm
In mathematics and computer science, an algorithm is an effective method expressed as a finite list of well-defined instructions for calculating a function. Algorithms are used for calculation, data processing, and automated reasoning...
. In this way, the whole wavelength range can be analyzed simultaneously, saving time, and an interferometer is also less expensive than a monochromator. The light absorbed in the infrared region does not correspond to electronic excitation of the substance studied, but rather to different kinds of vibrational excitation. The vibrational excitations are characteristic of different groups in a molecule, that can in this way be identified. The infrared spectrum typically has very narrow absorption lines, which makes them unsuited for quantitative analysis but gives very detailed information about the molecules. The frequencies of the different modes of vibration varies with isotope, and therefore different isotopes give different peaks. This makes it possible also to study the isotopic composition of a sample with infrared spectrophotometry.
Atomic absorption photometry
Atomic absorption photometers are photometers that measure the light from a very hot flame. The solution to be analyzed is injected into the flame at a constant, known rate. Metals in the solution are present in atomic form in the flame. The monochromatic light in this type of photometer is generated by a discharge lamp where the discharge takes place in a gas with the metal to be determined. The discharge then emits light with wavelengths corresponding to the spectral lines of the metal. A filter may be used to isolate one of the main spectral lines of the metal to be analyzed. The light is absorbed by the metal in the flame, and the absorption is used to determine the concentration of the metal in the original solution.See also
- RadiometryRadiometryIn optics, radiometry is a set of techniques for measuring electromagnetic radiation, including visible light. Radiometric techniques characterize the distribution of the radiation's power in space, as opposed to photometric techniques, which characterize the light's interaction with the human eye...
- Raman spectroscopyRaman spectroscopyRaman spectroscopy is a spectroscopic technique used to study vibrational, rotational, and other low-frequency modes in a system.It relies on inelastic scattering, or Raman scattering, of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range...
- PhotodetectorPhotodetectorPhotosensors or photodetectors are sensors of light or other electromagnetic energy. There are several varieties:*Active pixel sensors are image sensors consisting of an integrated circuit that contains an array of pixel sensors, each pixel containing a both a light sensor and an active amplifier...
– A transducer capable of accepting an optical signal and producing an electrical signal containing the same information as in the optical signal.
Article partly based on the corresponding article in Swedish Wikipedia