Pitteway triangulation
Encyclopedia
In computational geometry
, a Pitteway triangulation is a point set triangulation
in which the nearest neighbor
of any point p within the triangulation is one of the vertices of the triangle containing p.
Alternatively, it is a Delaunay triangulation
in which each internal edge crosses its dual
Voronoi diagram
edge. Pitteway triangulations are named after Michael Pitteway, who studied them in 1973. Not every point set supports a Pitteway triangulation. When such a triangulation exists it is a special case of the Delaunay triangulation
, and consists of the union of the Gabriel graph
and convex hull
.
is one in which, for any point within any triangle, that point lies at least
as close to one of the vertices of that triangle as to any other data point." The name "Pitteway triangulation" was given by .
together with the convex hull
of the point set. Conversely, when the Gabriel graph and convex hull together form a triangulation, it is a Pitteway triangulation.
Since all Gabriel graph and convex hull edges are part of the Delaunay triangulation
, a Pitteway triangulation, when it exists, is unique for points in general position
and coincides with the Delaunay triangulation. However point sets with no Pitteway triangulation will still have a Delaunay triangulation.
In the Pitteway triangulation, each edge pq either belongs to the convex hull or crosses the edge of the Voronoi diagram
that separates the cells containing p and q. In some references this property is used to define a Pitteway triangulation, as a Delaunay triangulation in which all internal Delaunay edges cross their dual Voronoi edges. However, a Pitteway triangulation may include convex hull edges that do not cross their duals.
Computational geometry
Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational...
, a Pitteway triangulation is a point set triangulation
Point set triangulation
A triangulation of a set of points P in the plane is a triangulation of the convex hull of P, with all points from P being among the vertices of the triangulation. Triangulations are special cases of planar straight-line graphs....
in which the nearest neighbor
Nearest neighbor search
Nearest neighbor search , also known as proximity search, similarity search or closest point search, is an optimization problem for finding closest points in metric spaces. The problem is: given a set S of points in a metric space M and a query point q ∈ M, find the closest point in S to q...
of any point p within the triangulation is one of the vertices of the triangle containing p.
Alternatively, it is a Delaunay triangulation
Delaunay triangulation
In mathematics and computational geometry, a Delaunay triangulation for a set P of points in a plane is a triangulation DT such that no point in P is inside the circumcircle of any triangle in DT. Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the...
in which each internal edge crosses its dual
Dual graph
In mathematics, the dual graph of a given planar graph G is a graph which has a vertex for each plane region of G, and an edge for each edge in G joining two neighboring regions, for a certain embedding of G. The term "dual" is used because this property is symmetric, meaning that if H is a dual...
Voronoi diagram
Voronoi diagram
In mathematics, a Voronoi diagram is a special kind of decomposition of a given space, e.g., a metric space, determined by distances to a specified family of objects in the space...
edge. Pitteway triangulations are named after Michael Pitteway, who studied them in 1973. Not every point set supports a Pitteway triangulation. When such a triangulation exists it is a special case of the Delaunay triangulation
Delaunay triangulation
In mathematics and computational geometry, a Delaunay triangulation for a set P of points in a plane is a triangulation DT such that no point in P is inside the circumcircle of any triangle in DT. Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the...
, and consists of the union of the Gabriel graph
Gabriel graph
In mathematics, the Gabriel graph of a set S of points in the Euclidean plane expresses one notion of proximity or nearness of those points. Formally, it is the graph with vertex set S in which any points P and Q in S are adjacent precisely if they are distinct and the closed disc of which line...
and convex hull
Convex hull
In mathematics, the convex hull or convex envelope for a set of points X in a real vector space V is the minimal convex set containing X....
.
History
The concept of a Pitteway triangulation was introduced by . See also , who writes "An optimal partitionis one in which, for any point within any triangle, that point lies at least
as close to one of the vertices of that triangle as to any other data point." The name "Pitteway triangulation" was given by .
Counterexamples
points out that not every point set supports a Pitteway triangulation. For instance, any triangulation of a regular pentagon includes a central isosceles triangle such that a point p near the midpoint of one of the triangle sides has its nearest neighbor outside the triangle.Relation to other geometric graphs
When a Pitteway triangulation exists, the midpoint of each edge interior to the triangulation must have the two edge endpoints as its nearest neighbors, for any other neighbor would violate the Pitteway property for nearby points in one of the two adjacent triangles. Thus, a circle having that edge as diameter must be empty of vertices, so the Pitteway triangulation consists of the Gabriel graphGabriel graph
In mathematics, the Gabriel graph of a set S of points in the Euclidean plane expresses one notion of proximity or nearness of those points. Formally, it is the graph with vertex set S in which any points P and Q in S are adjacent precisely if they are distinct and the closed disc of which line...
together with the convex hull
Convex hull
In mathematics, the convex hull or convex envelope for a set of points X in a real vector space V is the minimal convex set containing X....
of the point set. Conversely, when the Gabriel graph and convex hull together form a triangulation, it is a Pitteway triangulation.
Since all Gabriel graph and convex hull edges are part of the Delaunay triangulation
Delaunay triangulation
In mathematics and computational geometry, a Delaunay triangulation for a set P of points in a plane is a triangulation DT such that no point in P is inside the circumcircle of any triangle in DT. Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the...
, a Pitteway triangulation, when it exists, is unique for points in general position
General position
In algebraic geometry, general position is a notion of genericity for a set of points, or other geometric objects. It means the general case situation, as opposed to some more special or coincidental cases that are possible...
and coincides with the Delaunay triangulation. However point sets with no Pitteway triangulation will still have a Delaunay triangulation.
In the Pitteway triangulation, each edge pq either belongs to the convex hull or crosses the edge of the Voronoi diagram
Voronoi diagram
In mathematics, a Voronoi diagram is a special kind of decomposition of a given space, e.g., a metric space, determined by distances to a specified family of objects in the space...
that separates the cells containing p and q. In some references this property is used to define a Pitteway triangulation, as a Delaunay triangulation in which all internal Delaunay edges cross their dual Voronoi edges. However, a Pitteway triangulation may include convex hull edges that do not cross their duals.