Polar curve
Encyclopedia
In algebraic geometry
, the first polar, or simply polar of an algebraic plane curve C of degree n with respect to a point Q is an algebraic curve of degree n−1 which contains every point of C whose tangent line passes through Q. It is used to investigate the relationship between the curve and its dual
, for example in the derivation of the Plücker formula
s.
by f(x, y, z) = 0 where f is a homogeneous polynomial
of degree n, and let the homogeneous coordinates of Q be (a, b, c). Define the operator
Then ΔQf is a homogeneous polynomial of degree n−1 and ΔQf(x, y, z) = 0 defines a curve of degree n−1 called the first polar of C with respect of Q.
If P=(p, q, r) is a non-singular point
on the curve C then the equation of the tangent at P is
In particular, if P is on the intersection of C and its first polar with respect to Q if and only if Q is on the tangent to C at P. Note also that for a double point of C, the partial derivatives of f are all 0 so the first polar contains these points as well.
theorem there are at most n(n−1) of these. This puts an upper bound of n(n−1) on the class of a curve of degree n. The class may be computed exactly by counting the number and type of singular points on C (see Plücker formula
).
Using Taylor series
in several variables and exploiting homogeneity, f(λa+μp, λb+μq, λc+μr) can be expanded in two ways as
and
Comparing coefficients of λpμn−p shows that
In particular, the p-th polar of C with respect to Q is the locus of points P so that the (n−p)-th polar of C with respect to P passes through Q.
The conic is degenerate if and only if the determinant of the Hessian
of f,
Therefor the equation |H(f)|=0 defines a curve, the locus of points whose polar conics are degenerate, of degree 3(n−2) called the Hessian curve of C.
Algebraic geometry
Algebraic geometry is a branch of mathematics which combines techniques of abstract algebra, especially commutative algebra, with the language and the problems of geometry. It occupies a central place in modern mathematics and has multiple conceptual connections with such diverse fields as complex...
, the first polar, or simply polar of an algebraic plane curve C of degree n with respect to a point Q is an algebraic curve of degree n−1 which contains every point of C whose tangent line passes through Q. It is used to investigate the relationship between the curve and its dual
Dual curve
In projective geometry, a dual curve of a given plane curve C is a curve in the dual projective plane consisting of the set of lines tangent to C. There is a map from a curve to its dual, sending each point to the point dual to its tangent line. If C is algebraic then so is its dual and the degree...
, for example in the derivation of the Plücker formula
Plücker formula
In mathematics, a Plücker formula, named after Julius Plücker, is one of a family of formulae, of a type first developed by Plücker in the 1830s, that relate certain numeric invariants of algebraic curves to corresponding invariants of their dual curves. The invariant called the genus, common to...
s.
Definition
Let C be defined in homogeneous coordinatesHomogeneous coordinates
In mathematics, homogeneous coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcül, are a system of coordinates used in projective geometry much as Cartesian coordinates are used in Euclidean geometry. They have the advantage that the coordinates of points,...
by f(x, y, z) = 0 where f is a homogeneous polynomial
Homogeneous polynomial
In mathematics, a homogeneous polynomial is a polynomial whose monomials with nonzero coefficients all have thesame total degree. For example, x^5 + 2 x^3 y^2 + 9 x y^4 is a homogeneous polynomial...
of degree n, and let the homogeneous coordinates of Q be (a, b, c). Define the operator
Then ΔQf is a homogeneous polynomial of degree n−1 and ΔQf(x, y, z) = 0 defines a curve of degree n−1 called the first polar of C with respect of Q.
If P=(p, q, r) is a non-singular point
Singular point of an algebraic variety
In mathematics, a singular point of an algebraic variety V is a point P that is 'special' , in the geometric sense that V is not locally flat there. In the case of an algebraic curve, a plane curve that has a double point, such as the cubic curveexhibits at , cannot simply be parametrized near the...
on the curve C then the equation of the tangent at P is
In particular, if P is on the intersection of C and its first polar with respect to Q if and only if Q is on the tangent to C at P. Note also that for a double point of C, the partial derivatives of f are all 0 so the first polar contains these points as well.
Class of a curve
The class of C may be defined as the number of tangents that may be drawn to C from a point not on C (counting multiplicities and including imaginary tangents). Each of these tangents touches C at one of the points of intersection of C and the first polar, and by Bézout's theoremBézout's theorem
Bézout's theorem is a statement in algebraic geometry concerning the number of common points, or intersection points, of two plane algebraic curves. The theorem claims that the number of common points of two such curves X and Y is equal to the product of their degrees...
theorem there are at most n(n−1) of these. This puts an upper bound of n(n−1) on the class of a curve of degree n. The class may be computed exactly by counting the number and type of singular points on C (see Plücker formula
Plücker formula
In mathematics, a Plücker formula, named after Julius Plücker, is one of a family of formulae, of a type first developed by Plücker in the 1830s, that relate certain numeric invariants of algebraic curves to corresponding invariants of their dual curves. The invariant called the genus, common to...
).
Higher polars
The p-th polar of a C for an natural number p is defined as ΔQpf(x, y, z) = 0. This is a curve of degree n−p. When p is n−1 the p-th polar is a line called the polar line of C with respect to Q. Similarly, when p is n−2 the curve is called the polar conic of C.Using Taylor series
Taylor series
In mathematics, a Taylor series is a representation of a function as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point....
in several variables and exploiting homogeneity, f(λa+μp, λb+μq, λc+μr) can be expanded in two ways as
and
Comparing coefficients of λpμn−p shows that
In particular, the p-th polar of C with respect to Q is the locus of points P so that the (n−p)-th polar of C with respect to P passes through Q.
Poles
If the polar line of C with respect to a point Q is a line L, the Q is said to be a pole of L. A given line has (n−1)2 poles (counting multiplicities etc.) where n is the degree of C. So see this, pick two points P and Q on L. The locus of points whose polar lines pass through P is the first polar of P and this is a curve of degree n−1. Similarly, the locus of points whose polar lines pass through Q is the first polar of Q and this is also a curve of degree n−1. The polar line of a point is L if and only if it contains both P and Q, so the poles of L are exactly the points of intersection of the two first polars. By Bézout's theorem these curves have (n−1)2 points of intersection and these are the pole of L.The Hessian
For a given point Q=(a, b, c), the polar conic is the locus of points P so that Q is on the second polar of P. In other words the equation of the polar conic isThe conic is degenerate if and only if the determinant of the Hessian
Hessian matrix
In mathematics, the Hessian matrix is the square matrix of second-order partial derivatives of a function; that is, it describes the local curvature of a function of many variables. The Hessian matrix was developed in the 19th century by the German mathematician Ludwig Otto Hesse and later named...
of f,
Therefor the equation |H(f)|=0 defines a curve, the locus of points whose polar conics are degenerate, of degree 3(n−2) called the Hessian curve of C.