Powder metallurgy
Encyclopedia
Powder metallurgy is the process of blending fine powdered materials, pressing them into a desired shape (compacting), and then heating the compressed material in a controlled atmosphere to bond the material (sintering). The powder metallurgy process generally consists of four basic steps: (1) powder manufacture, (2) powder blending,(3) compacting, (4) sintering. Compacting is generally performed at room temperature, and the elevated-temperature process of sintering is usually conducted at atmospheric pressure. Optional secondary processing often follows to obtain special properties or enhanced precision.

Two main techniques used to form and consolidate the powder are sintering
Sintering
Sintering is a method used to create objects from powders. It is based on atomic diffusion. Diffusion occurs in any material above absolute zero, but it occurs much faster at higher temperatures. In most sintering processes, the powdered material is held in a mold and then heated to a temperature...

 and metal injection molding
Metal Injection Molding
Metal injection molding is a metalworking process where finely-powdered metal is mixed with a measured amount of binder material to comprise a 'feedstock' capable of being handled by plastic processing equipment through a process known as injection mold forming. The molding process allows...

. Recent developments have made it possible to use rapid manufacturing techniques which use the metal powder for the products. Because with this technique the powder is melted and not sintered, better mechanical strength can be accomplished.

History and capabilities

The history of powder metallurgy and the art of metals and ceramic
Ceramic
A ceramic is an inorganic, nonmetallic solid prepared by the action of heat and subsequent cooling. Ceramic materials may have a crystalline or partly crystalline structure, or may be amorphous...

s sintering are intimately related. Sintering involves the production of a hard solid metal or ceramic piece from a starting powder. According to DeGramo, "While a crude form of iron powder metallurgy existed in Egypt as early as 3000 B.C, and the ancient Incas made jewelry and other artifacts from precious metal powders, mass manufacturing of P/M products did not begin until the mid-or late- 19th century". In these early manufacturing operations, iron was extracted by hand from metal sponge following reduction and was then reintroduced as a powder for final melting or sintering.

A much wider range of products can be obtained from powder processes than from direct alloy
Alloy
An alloy is a mixture or metallic solid solution composed of two or more elements. Complete solid solution alloys give single solid phase microstructure, while partial solutions give two or more phases that may or may not be homogeneous in distribution, depending on thermal history...

ing of fused materials. In melting operations the "phase rule" applies to all pure and combined elements and strictly dictates the distribution of liquid and solid phase
Phase (matter)
In the physical sciences, a phase is a region of space , throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, and chemical composition...

s which can exist for specific compositions. In addition, whole body melting of starting materials is required for alloying, thus imposing unwelcome chemical, thermal, and containment constraints on manufacturing. Unfortunately, the handling of aluminium/iron powders poses major problems. Other substances that are especially reactive with atmospheric oxygen, such as tin
Tin
Tin is a chemical element with the symbol Sn and atomic number 50. It is a main group metal in group 14 of the periodic table. Tin shows chemical similarity to both neighboring group 14 elements, germanium and lead and has two possible oxidation states, +2 and the slightly more stable +4...

, are sinterable in special atmospheres or with temporary coatings.

In powder metallurgy or ceramics it is possible to fabricate components which otherwise would decompose or disintegrate. All considerations of solid-liquid phase changes can be ignored, so powder processes are more flexible than casting
Casting
In metalworking, casting involves pouring liquid metal into a mold, which contains a hollow cavity of the desired shape, and then allowing it to cool and solidify. The solidified part is also known as a casting, which is ejected or broken out of the mold to complete the process...

, extrusion
Extrusion
Extrusion is a process used to create objects of a fixed cross-sectional profile. A material is pushed or drawn through a die of the desired cross-section...

, or forging
Forging
Forging is a manufacturing process involving the shaping of metal using localized compressive forces. Forging is often classified according to the temperature at which it is performed: '"cold," "warm," or "hot" forging. Forged parts can range in weight from less than a kilogram to 580 metric tons...

 techniques. Controllable characteristics of products prepared using various powder technologies include mechanical, magnetic, and other unconventional properties of such materials as porous solids, aggregates, and intermetallic compounds. Competitive characteristics of manufacturing processing (e.g., tool wear, complexity, or vendor options) also may be closely regulated.

Powder Metallurgy products are today used in a wide range of industries, from automotive and aerospace applications to power tools and household appliances. Each year the international PM awards highlight the developing capabilities of the technology.

Isostatic powder compacting

Isostatic powder compacting is a mass-conserving shaping process. Fine metal particles are placed into a flexible mould and then high gas or fluid pressure is applied to the mould. The resulting article is then sintered in a furnace. This increases the strength of the part by bonding the metal particles. This manufacturing process produces very little scrap metal and can be used to make many different shapes. The tolerances that this process can achieve are very precise, ranging from +/- 0.008 inches (0.2 mm) for axial dimensions and +/- 0.020 inches (5 mm) for radial dimensions. This is the most efficient type of powder compacting.(The following subcategories are also from this reference.) This operation is generally applicable on small production quantities, as it is more costly to run due to its slow operating speed and the need for expendable tooling.poda

Compacting pressures range from 15000 psi (103,421,359.4 Pa) to 40000 psi (275,790,291.7 Pa) for most metals and approximately 2000 psi (13,789,514.6 Pa) to 10000 psi (68,947,572.9 Pa) for non-metals. The density of isostatic compacted parts is 5% to 10% higher than with other powder metallurgy processes.

Equipment

There are many types of equipment used in Powder Compacting. There is the mold, which is flexible, a pressure mold that the mold is in, and the machine delivering the pressure. There are also controlling devices to control the amount of pressure and how long the pressure is held for. The machines need to apply anywhere from 15,000 psi to 40,000 psi for metals.

Geometrical Possibilities

Typical workpiece sizes range from 0.25 in (0.635 cm) to 0.75 in (1.91 cm) thick and 0.5 in (1.27 cm) to 10 in (25 cm) long. It is possible to compact workpieces that are between 0.0625 in (0.15875 cm) and 5 in (13 cm) thick and 0.0625 in (0.15875 cm) to 40 in (102 cm) long.

Tool style

Isostatic tools are available in three styles, free mold (wet-bag), coarse mold(damp-bag), and fixed mold (dry-bag). The free mold style is the traditional style of isostatic compaction and is not generally used for high production work. In free mold tooling the mold is removed and filled outside the canister. Damp bag is where the mold is located in the canister, yet filled outside. In fixed mold tooling, the mold is contained with in the canister, which facilitates automation of the process.

Hot isostatic pressing

Hot isostatic pressing (HIP) compresses and sinters the part simultaneously by applying heat ranging from 900°F (480°C) to 2250°F (1230°C). Argon gas is the most common gas used in HIP because it is an inert gas, thus prevents chemical reactions during the operation.

Cold isostatic pressing

Cold isostatic pressing (CIP) uses fluid as a means of applying pressure to the mold at room temperature. After removal the part still needs to be sintered.

Design Considerations

Advantages over standard powder compaction are the possibility of thinner walls and larger workpieces. Height to diameter ratio has no limitation. No specific limitations exist in wall thickness variations, undercuts
Undercut (manufacturing)
In manufacturing, an undercut is a special type of recessed surface. In turning it refers to a recess in a diameter. In machining it refers to a recess in a corner. In molding it refers to a feature that cannot be molded using only a single pull mold...

, reliefs, threads, and cross holes. No lubricants are need for isostatic powder compaction. The minimum wall thickness is 0.05 inches (1.27 mm) and the product can have a weight between 40 and 300 pounds (18 and 136 kg). There is 25 to 45% shrinkage of the powder after compacting.

Powder production techniques

Any fusible material can be atomized. Several techniques have been developed which permit large production rates of powdered particles, often with considerable control over the size ranges of the final grain population. Powders may be prepared by comminution
Comminution
Comminution is the process in which solid materials are reduced in size, by crushing, grinding and other processes. It occurs naturally during faulting in the upper part of the crust and is an important operation in mineral processing, ceramics, electronics and other fields. Within industrial uses,...

, grinding, chemical reactions, or electrolytic deposition. Several of the melting and mechanical procedures are clearly adaptable to operations in space or on the Moon.

Powders of the elements titanium, vanadium, thorium, niobium, tantalum, calcium, and uranium have been produced by high-temperature reduction
Redox
Redox reactions describe all chemical reactions in which atoms have their oxidation state changed....

 of the corresponding nitride
Nitride
In chemistry, a nitride is a compound of nitrogen where nitrogen has a formal oxidation state of −3. Nitrides are a large class of compounds with a wide range of properties and applications....

s and carbide
Carbide
In chemistry, a carbide is a compound composed of carbon and a less electronegative element. Carbides can be generally classified by chemical bonding type as follows: salt-like, covalent compounds, interstitial compounds, and "intermediate" transition metal carbides...

s. Iron, nickel, uranium, and beryllium submicrometre powders are obtained by reducing metallic oxalate
Oxalate
Oxalate , is the dianion with formula C2O42− also written 22−. Either name is often used for derivatives, such as disodium oxalate, 2C2O42−, or an ester of oxalic acid Oxalate (IUPAC: ethanedioate), is the dianion with formula C2O42− also written (COO)22−. Either...

s and formate
Formate
Formate or methanoate is the ion CHOO− or HCOO− . It is the simplest carboxylate anion. It is produced in large amounts in the hepatic mitochondria of embryonic cells and in cancer cells by the folate cycle Formate or methanoate is the ion CHOO− or HCOO− (formic acid minus one hydrogen ion). It...

s. Exceedingly fine particles also have been prepared by directing a stream of molten metal through a high-temperature plasma
Plasma (physics)
In physics and chemistry, plasma is a state of matter similar to gas in which a certain portion of the particles are ionized. Heating a gas may ionize its molecules or atoms , thus turning it into a plasma, which contains charged particles: positive ions and negative electrons or ions...

 jet or flame
Flame
A flame is the visible , gaseous part of a fire. It is caused by a highly exothermic reaction taking place in a thin zone...

, simultaneously atomizing and comminuting the material. On Earth various chemical- and flame-associated powdering processes are adopted in part to prevent serious degradation of particle surfaces by atmospheric oxygen.

Atomization

Atomization is accomplished by forcing a molten metal stream through an orifice at moderate pressures. A gas is introduced into the metal stream just before it leaves the nozzle, serving to create turbulence as the entrained gas expands (due to heating) and exits into a large collection volume exterior to the orifice. The collection volume is filled with gas to promote further turbulence of the molten metal jet. On Earth, air and powder streams are segregated using gravity or cyclonic separation
Cyclonic separation
Cyclonic separation is a method of removing particulates from an air, gas or liquid stream, without the use of filters, through vortex separation. Rotational effects and gravity are used to separate mixtures of solids and fluids...

. Most atomized powders are annealed, which helps reduce the oxide and carbon content. The water atomized particles are smaller, cleaner, and nonporous and have a greater breadth of size, which allows better compacting.

Simple atomization techniques are available in which liquid metal is forced through an orifice at a sufficiently high velocity to ensure turbulent flow. The usual performance index used is the Reynolds number R = fvd/n, where f = fluid density, v = velocity of the exit stream, d = diameter of the opening, and n = absolute viscosity. At low R the liquid jet oscillates, but at higher velocities the stream becomes turbulent and breaks into droplets. Pumping energy is applied to droplet formation with very low efficiency (on the order of 1%) and control over the size distribution of the metal particles produced is rather poor. Other techniques such as nozzle vibration, nozzle asymmetry, multiple impinging streams, or molten-metal injection into ambient gas are all available to increase atomization efficiency, produce finer grains, and to narrow the particle size distribution. Unfortunately, it is difficult to eject metals through orifices smaller than a few millimeters in diameter, which in practice limits the minimum size of powder grains to approximately 10 μm. Atomization also produces a wide spectrum of particle sizes, necessitating downstream classification by screening and remelting a significant fraction of the grain boundary.

Centrifugal disintegration

Centrifugal disintegration of molten particles offers one way around these problems. Extensive experience is available with iron, steel, and aluminium. Metal to be powdered is formed into a rod which is introduced into a chamber through a rapidly rotating spindle. Opposite the spindle tip is an electrode from which an arc is established which heats the metal rod. As the tip material fuses, the rapid rod rotation throws off tiny melt droplets which solidify before hitting the chamber walls. A circulating gas sweeps particles from the chamber. Similar techniques could be employed in space or on the Moon. The chamber wall could be rotated to force new powders into remote collection vessels, and the electrode could be replaced by a solar mirror focused at the end of the rod.

An alternative approach capable of producing a very narrow distribution of grain sizes but with low throughput consists of a rapidly spinning bowl heated to well above the melting point of the material to be powdered. Liquid metal, introduced onto the surface of the basin near the center at flow rates adjusted to permit a thin metal film to skim evenly up the walls and over the edge, breaks into droplets, each approximately the thickness of the film.

Other techniques

Another powder-production technique involves a thin jet of liquid metal intersected by high-speed streams of atomized water which break the jet into drops and cool the powder before it reaches the bottom of the bin. In subsequent operations the powder is dried. This is called water atomisation. The advantage is that metal solidifies faster than by gas atomization since thermal conductivity of water is some magnitudes higher. Since the solidification rate is inversely proportional to the particle size smaller particles can be made using water atomisation. The smaller the particles, the more homogeneous the micro structure will be. Notice that particles will have a more irregular shape and the particle size distribution will be wider. In addition, some surface contamination can occur by oxidation skin formation. Powder can be reduced by some kind of pre-consolidation treatment as annealing.

Powder compaction

Powder compaction is the process of compacting metal powder in a die through the application of high pressures. Typically the tools are held in the vertical orientation with the punch tool forming the bottom of the cavity. The powder is then compacted into a shape and then ejected from the die cavity. In a number of these applications the parts may require very little additional work for their intended use; making for very cost efficient manufacturing.

The density of the compacted powder is directly proportional to the amount of pressure applied. Typical pressures range from 80 psi to 1000 psi, pressures from 1000 psi to 1,000,000 psi have been obtained. Pressure of 10 tons/in² to 50 tons/in² are commonly used for metal powder compaction. To attain the same compression ratio across a component with more than one level or height, it is necessary to work with multiple lower punches. A cylindrical workpiece is made by single-level tooling. A more complex shape can be made by the common multiple-level tooling.

Production rates of 15 to 30 parts per minutes are common.

There are four major classes of tool styles: single-action compaction, used for thin, flat components; opposed double-action with two punch motions, which accommodates thicker components; double-action with floating die; and double action withdrawal die. Double action classes give much better density distribution than single action. Tooling must be designed so that it will withstand the extreme pressure without deforming or bending. Tools must be made from materials that are polished and wear-resistant.

Better workpiece materials can be obtained by repressing and re-sintering. Here is a table of some of the obtainable properties.
Typical workpiece materials
Workpiece material Density (grams/cc) Yield strength (psi) Tensile strength (psi) Hardness (HB)
Iron 5.2 to 7.0 5.1*103 to 2.3*104 7.3*103 to 2.9*104 40 to 70
Low alloy steel 6.3 to 7.4 1.5*104 to 2.9*104 2.00*104 to 4.4*104 60 to 100
Alloyed steel 6.8 to 7.4 2.6*104 to 8.4*104 2.9*104 to 9.4*104 60 and up
Stainless steel 6.3 to 7.6 3.6*104 to 7.3*104 4.4*104 to 8.7*104 60 and up
Bronze 5.5 to 7.5 1.1*104 to 2.9*104 1.5*104 to 4.4*104 50 to 70
Brass 7.0 to 7.9 1.1*104 to 2.9*104 1.6*104 to 3.5*104 60

Cold compaction

Cold compaction is a process that powder materials is compressed in a temperature region where high temperature deformation mechanics like dislocation or diffusional creep can be neglected. Cold compressing is the most important compaction method in powder metallurgy
Metallurgy
Metallurgy is a domain of materials science that studies the physical and chemical behavior of metallic elements, their intermetallic compounds, and their mixtures, which are called alloys. It is also the technology of metals: the way in which science is applied to their practical use...

. It starts from bulk powders containing very small amounts and sometimes even no lubricant
Lubricant
A lubricant is a substance introduced to reduce friction between moving surfaces. It may also have the function of transporting foreign particles and of distributing heat...

 or binder additions.

The compaction behavior of powders, expressed by their overall pressure density relations is shown in Fig 3. The controlling parameters are mainly particles size and the ability for plastic deformation. Densification starts form the apparent density, which is similar for the coarse iron and alumina powder, and which is not too far away from random dense packing for both of them. The fine powders exhibit a significantly lower starting density, due to hindered packing. With increasing pressure, the average density of the compact increases. The slope of the curves differs significantly for the ductile metal and non ductile alumina. This is due to the filling of inter-particle voids by large amount of plastic deformation. The inter-particle friction and bridging effects increases with decreasing particle size.

Design considerations

  • Must be able to remove part from die.
  • Maximum surface area below 20 square inches.
  • Minimum wall thickness of 0.08 in.
  • Sharp corners should be avoided.
  • Should avoid height to diameter ratios greater than 7:1.
  • Adjacent wall thickness ratios greater than 2.5 to 1 should be avoided.


One of the major advantages of this process is its ability to produce complex geometries. Parts with undercuts and threads require a secondary machining operation. Typical part sizes range from 0.1 in² to 20 in². in area and from 0.1 in. to 4 in. in length. However, it is possible to produce parts that are less than 0.1 in². and larger than 25 in². in area and from a fraction of an inch to approximately 8 in. in length.

Isostatic pressing

In some pressing operations (such as hot isostatic pressing) compact formation and sintering occur simultaneously. This procedure, together with explosion-driven compressive techniques, is used extensively in the production of high-temperature and high-strength parts such as turbine blades for jet engines. In most applications of powder metallurgy the compact is hot-pressed, heated to a temperature above which the materials cannot remain work-hardened. Hot pressing lowers the pressures required to reduce porosity and speeds welding and grain deformation processes. Also it permits better dimensional control of the product, lessened sensitivity to physical characteristics of starting materials, and allows powder to be driven to higher densities than with cold pressing, resulting in higher strength. Negative aspects of hot pressing include shorter die life, slower throughput because of powder heating, and the frequent necessity for protective atmospheres during forming and cooling stages.

Sintering

Solid state sintering is the process of taking metal in the form of a powder and placing it into a mold or die. Once compacted into the mold the material is placed under a high heat for a long period of time. Under heat, bonding takes place between the porous aggregate particles and once cooled the powder has bonded to form a solid piece.

Sintering can be considered to proceed in three stages. During the first, neck growth proceeds rapidly but powder particles remain discrete. During the second, most densification occurs, the structure recrystallizes and particles diffuse into each other. During the third, isolated pores tend to become spheroidal and densification continues at a much lower rate. The words Solid State in Solid State Sintering simply refer to the state the material is in when it bonds, solid meaning the material was not turned molten to bond together as alloys are formed.

One recently developed technique for high-speed sintering involves passing high electrical current through a powder to preferentially heat the asperities. Most of the energy serves to melt that portion of the compact where migration is desirable for densification; comparatively little energy is absorbed by the bulk materials and forming machinery. Naturally, this technique is not applicable to electrically insulating powders.

To allow efficient stacking of product in the furnace during sintering and prevent parts sticking together, many manufacturers separate ware using Ceramic Powder Separator Sheets. These sheets are available in various materials such as alumina, zirconia and magnesia. They are also available in fine medium and coarse particle sizes. By matching the material and particle size to the ware being sintered, surface damage and contamination can be reduced while maximizing furnace loading.

Continuous powder processing

The phrase "continuous process" should be used only to describe modes of manufacturing which could be extended indefinitely in time. Normally, however, the term refers to processes whose products are much longer in one physical dimension than in the other two. Compression, rolling, and extrusion are the most common examples.

In a simple compression process, powder flows from a bin onto a two-walled channel and is repeatedly compressed vertically by a horizontally stationary punch. After stripping the compress from the conveyor the compact is introduced into a sintering furnace. An even easier approach is to spray powder onto a moving belt and sinter it without compression. Good methods for stripping cold-pressed materials from moving belts are hard to find. One alternative that avoids the belt-stripping difficulty altogether is the manufacture of metal sheets using opposed hydraulic rams, although weakness lines across the sheet may arise during successive press operations.

Powders can also be rolled to produce sheets. The powdered metal is fed into a two-high rolling mill and is compacted into strip at up to 100 feet per minute. The strip is then sintered and subjected to another rolling and sintering. Rolling is commonly used to produce sheet metal for electrical and electronic components as well as coins. Considerable work also has been done on rolling multiple layers of different materials simultaneously into sheets.

Extrusion processes are of two general types. In one type, the powder is mixed with a binder or plasticizer at room temperature; in the other, the powder is extruded at elevated temperatures without fortification. Extrusions with binders are used extensively in the preparation of tungsten-carbide composites. Tubes, complex sections, and spiral drill shapes are manufactured in extended lengths and diameters varying from 0.5–300 mm. Hard metal wires of 0.1 mm diameter have been drawn from powder stock. At the opposite extreme, large extrusions on a tonnage basis may be feasible.

There appears to be no limitation to the variety of metals and alloys that can be extruded, provided the temperatures and pressures involved are within the capabilities of die materials. Extrusion lengths may range from 3–30 m and diameters from 0.2–1 m. Modern presses are largely automatic and operate at high speeds (on the order of m/s).
Extrusion Temperatures Of Common Metals And Alloys
Metals and alloys Temperature of extrusion, K °C
Aluminium
Aluminium
Aluminium or aluminum is a silvery white member of the boron group of chemical elements. It has the symbol Al, and its atomic number is 13. It is not soluble in water under normal circumstances....

 and alloys
673-773 400-500
Magnesium
Magnesium
Magnesium is a chemical element with the symbol Mg, atomic number 12, and common oxidation number +2. It is an alkaline earth metal and the eighth most abundant element in the Earth's crust and ninth in the known universe as a whole...

 and alloys
573-673 300-400
Copper
Copper
Copper is a chemical element with the symbol Cu and atomic number 29. It is a ductile metal with very high thermal and electrical conductivity. Pure copper is soft and malleable; an exposed surface has a reddish-orange tarnish...

1073–1153 800-880
Brass
Brass
Brass is an alloy of copper and zinc; the proportions of zinc and copper can be varied to create a range of brasses with varying properties.In comparison, bronze is principally an alloy of copper and tin...

es
923-1123 650-850
Nickel brasses 1023–1173 750-900
Cupro-nickel 1173–1273 900-1000
Nickel
Nickel
Nickel is a chemical element with the chemical symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel belongs to the transition metals and is hard and ductile...

1383–1433 1110–1160
Monel
Monel
Monel is a trademark of Special Metals Corporation for a series of nickel alloys, primarily composed of nickel and copper, with some iron and other trace elements. Monel was created by David H. Browne, chief metallurgist for International Nickel Co...

1373–1403 1100–1130
Inconel
Inconel
Inconel is a registered trademark of Special Metals Corporation that refers to a family of austenitic nickel-chromium-based superalloys. Inconel alloys are typically used in high temperature applications. It is often referred to in English as "Inco"...

1443–1473 1170–1200
Steels 1323–1523 1050–1250

Special products

Many special products are possible with powder metallurgy technology. A nonexhaustive list includes Al2O3 whiskers coated with very thin oxide layers for improved refractories; iron compacts with Al2O3 coatings for improved high-temperature creep strength; light bulb filaments made with powder technology; linings for friction brakes; metal glasses for high-strength films and ribbons; heat shield
Heat shield
A heat shield is designed to shield a substance from absorbing excessive heat from an outside source by either dissipating, reflecting or simply absorbing the heat...

s for spacecraft reentry into Earth's atmosphere; electrical contacts for handling large current flows; magnet
Magnet
A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, and attracts or repels other magnets.A permanent magnet is an object...

s; microwave
Microwave
Microwaves, a subset of radio waves, have wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz and 300 GHz. This broad definition includes both UHF and EHF , and various sources use different boundaries...

 ferrites; filters for gases; and bearing
Bearing (mechanical)
A bearing is a device to allow constrained relative motion between two or more parts, typically rotation or linear movement. Bearings may be classified broadly according to the motions they allow and according to their principle of operation as well as by the directions of applied loads they can...

s which can be infiltrated with lubricant
Lubricant
A lubricant is a substance introduced to reduce friction between moving surfaces. It may also have the function of transporting foreign particles and of distributing heat...

s.

Extremely thin films and tiny spheres exhibit high strength. One application of this observation is to coat brittle materials in whisker form with a submicrometre film of much softer metal (e.g., cobalt
Cobalt
Cobalt is a chemical element with symbol Co and atomic number 27. It is found naturally only in chemically combined form. The free element, produced by reductive smelting, is a hard, lustrous, silver-gray metal....

-coated tungsten). The surface strain of the thin layer places the harder metal under compression, so that when the entire composite is sintered the rupture strength increases markedly. With this method, strengths on the order of 2.8 GPa versus 550 MPa have been observed for, respectively, coated (25% Co) and uncoated tungsten carbides.

Metal Clay

Metals such as silver, bronze, copper, gold, and steel have been made into materials known as metal clay
Metal clay
Metal clay is a crafting medium consisting of very small particles of metal such as silver, gold, platinum, or copper mixed with an organic binder and water for use in making jewelry, beads and small sculptures. Originating in Japan in 1990, metal clay can be shaped just like any soft clay, by hand...

. These materials are used by artists and jewelers to make art objects in a home or studio setting. When fired the organic binder burns off and the microscopic metal powder in the clay is sintered. Silver and gold metal clays can be fired in a normal kiln environment while most base metal clays must be fired in a reduced atmosphere using activated carbon to prevent oxidation from inhibiting proper sintering.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK