Theoretical astronomy
Encyclopedia
Based on strict dictionary definitions, "astronomy" refers to "the study of objects and matter outside the Earth's atmosphere and of their physical and chemical properties" In some cases, as in the introduction of the introductory textbook The Physical Universe by Frank Shu
Frank Shu
Frank Shu , is an astrophysicist, author and professor of astronomy at the University of California, Berkeley and University of California, San Diego and the university president of the National Tsing Hua University....

, "astronomy" may be used to describe the qualitative study of the subject. Astronomy
Astronomy
Astronomy is a natural science that deals with the study of celestial objects and phenomena that originate outside the atmosphere of Earth...

 focuses on celestial objects, space, and the physical universe as a whole. Observations of the Sun
Sun
The Sun is the star at the center of the Solar System. It is almost perfectly spherical and consists of hot plasma interwoven with magnetic fields...

, Moon
Moon
The Moon is Earth's only known natural satellite,There are a number of near-Earth asteroids including 3753 Cruithne that are co-orbital with Earth: their orbits bring them close to Earth for periods of time but then alter in the long term . These are quasi-satellites and not true moons. For more...

, star
Star
A star is a massive, luminous sphere of plasma held together by gravity. At the end of its lifetime, a star can also contain a proportion of degenerate matter. The nearest star to Earth is the Sun, which is the source of most of the energy on Earth...

s, and planet
Planet
A planet is a celestial body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and has cleared its neighbouring region of planetesimals.The term planet is ancient, with ties to history, science,...

s have formed the basis of timekeeping and navigation.

Astronomy
Astronomy
Astronomy is a natural science that deals with the study of celestial objects and phenomena that originate outside the atmosphere of Earth...

 is a branch of science, but unlike other sciences, which have Earth-based laboratories in which controlled experiments are performed, astronomy has its labs located in the heavens far beyond the reach, let alone control, of the terrestrial observer. "So how can one be sure that what one sees out there is subject to the same rules and disciplines of science that govern the local laboratory experiments of physics and chemistry?" "The most incomprehensible thing about the universe is that it is comprehensible." – Albert Einstein.

Ptolemy
Ptolemy
Claudius Ptolemy , was a Roman citizen of Egypt who wrote in Greek. He was a mathematician, astronomer, geographer, astrologer, and poet of a single epigram in the Greek Anthology. He lived in Egypt under Roman rule, and is believed to have been born in the town of Ptolemais Hermiou in the...

's Almagest
Almagest
The Almagest is a 2nd-century mathematical and astronomical treatise on the apparent motions of the stars and planetary paths. Written in Greek by Claudius Ptolemy, a Roman era scholar of Egypt,...

, although a brilliant treatise on theoretical astronomy combined with a practical handbook for computation, nevertheless includes many compromises to reconcile discordant observations. Theoretical astronomy is usually assumed to have begun with Johannes Kepler (1571–1630), and Kepler's laws
Kepler's laws of planetary motion
In astronomy, Kepler's laws give a description of the motion of planets around the Sun.Kepler's laws are:#The orbit of every planet is an ellipse with the Sun at one of the two foci....

. It is co-equal with observation. The general history of astronomy deals with the history of the descriptive and theoretical astronomy of the solar system, from the late sixteenth century to the end of the nineteenth century. The major categories of works on the history of modern astronomy include general histories, national and institutional histories, instrumentation, descriptive astronomy, theoretical astronomy, positional astronomy, and astrophysics. Astronomy was early to adopt computational techniques to model stellar and galactic formation and celestial mechanics. From the point of view of theoretical astronomy, not only must the mathematical expression be reasonably accurate but it should preferably exist in a form which is amenable to further mathematical analysis when used in specific problems. Most of theoretical astronomy uses Newtonian theory of gravitation, considering that the effects of general relativity are weak for most celestial objects. The obvious fact is that theoretical astronomy cannot (and does not try) to predict the position, size and temperature of every star in the heavens. Theoretical astronomy by and large has concentrated upon analyzing the apparently complex but periodic motions of celestial objects.

Integrating astronomy and physics

"Contrary to the belief generally held by laboratory physicists, astronomy has contributed to the growth of our understanding of physics." Physics has helped in the elucidation of astronomical phenomena, and astronomy has helped in the elucidation of physical phenomena:
  1. discovery of the law of gravitation came from the information provided by the motion of the Moon
    Moon
    The Moon is Earth's only known natural satellite,There are a number of near-Earth asteroids including 3753 Cruithne that are co-orbital with Earth: their orbits bring them close to Earth for periods of time but then alter in the long term . These are quasi-satellites and not true moons. For more...

     and the planets,
  2. viability of nuclear fusion as demonstrated in the Sun
    Sun
    The Sun is the star at the center of the Solar System. It is almost perfectly spherical and consists of hot plasma interwoven with magnetic fields...

     and stars and yet to be reproduced on Earth in a controlled form.


Integrating astronomy with physics involves
Physical interaction Astronomical phenomena
Electromagnetism
Electromagnetism
Electromagnetism is one of the four fundamental interactions in nature. The other three are the strong interaction, the weak interaction and gravitation...

:
observation using the electromagnetic spectrum
Electromagnetic spectrum
The electromagnetic spectrum is the range of all possible frequencies of electromagnetic radiation. The "electromagnetic spectrum" of an object is the characteristic distribution of electromagnetic radiation emitted or absorbed by that particular object....

black body radiation
Thermal radiation
Thermal radiation is electromagnetic radiation generated by the thermal motion of charged particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation....

stellar radiation
synchrotron radiation
Synchrotron radiation
The electromagnetic radiation emitted when charged particles are accelerated radially is called synchrotron radiation. It is produced in synchrotrons using bending magnets, undulators and/or wigglers...

radio and X-ray sources
inverse-Compton scattering
Compton scattering
In physics, Compton scattering is a type of scattering that X-rays and gamma rays undergo in matter. The inelastic scattering of photons in matter results in a decrease in energy of an X-ray or gamma ray photon, called the Compton effect...

astronomical X-ray sources
acceleration of charged particles pulsar
Pulsar
A pulsar is a highly magnetized, rotating neutron star that emits a beam of electromagnetic radiation. The radiation can only be observed when the beam of emission is pointing towards the Earth. This is called the lighthouse effect and gives rise to the pulsed nature that gives pulsars their name...

s and cosmic ray
Cosmic ray
Cosmic rays are energetic charged subatomic particles, originating from outer space. They may produce secondary particles that penetrate the Earth's atmosphere and surface. The term ray is historical as cosmic rays were thought to be electromagnetic radiation...

s
absorption
Absorption (electromagnetic radiation)
In physics, absorption of electromagnetic radiation is the way by which the energy of a photon is taken up by matter, typically the electrons of an atom. Thus, the electromagnetic energy is transformed to other forms of energy for example, to heat. The absorption of light during wave propagation is...

/scattering
Scattering
Scattering is a general physical process where some forms of radiation, such as light, sound, or moving particles, are forced to deviate from a straight trajectory by one or more localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of...

interstellar dust
Interstellar medium
In astronomy, the interstellar medium is the matter that exists in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, dust, and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space...

Strong and weak interaction: nucleosynthesis
Nucleosynthesis
Nucleosynthesis is the process of creating new atomic nuclei from pre-existing nucleons . It is thought that the primordial nucleons themselves were formed from the quark–gluon plasma from the Big Bang as it cooled below two trillion degrees...

 in star
Star
A star is a massive, luminous sphere of plasma held together by gravity. At the end of its lifetime, a star can also contain a proportion of degenerate matter. The nearest star to Earth is the Sun, which is the source of most of the energy on Earth...

s
cosmic ray
Cosmic ray
Cosmic rays are energetic charged subatomic particles, originating from outer space. They may produce secondary particles that penetrate the Earth's atmosphere and surface. The term ray is historical as cosmic rays were thought to be electromagnetic radiation...

s
supernova
Supernova
A supernova is a stellar explosion that is more energetic than a nova. It is pronounced with the plural supernovae or supernovas. Supernovae are extremely luminous and cause a burst of radiation that often briefly outshines an entire galaxy, before fading from view over several weeks or months...

e
primeval universe
Gravity
Gravitation
Gravitation, or gravity, is a natural phenomenon by which physical bodies attract with a force proportional to their mass. Gravitation is most familiar as the agent that gives weight to objects with mass and causes them to fall to the ground when dropped...

:
motion of planet
Planet
A planet is a celestial body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and has cleared its neighbouring region of planetesimals.The term planet is ancient, with ties to history, science,...

s, satellite
Natural satellite
A natural satellite or moon is a celestial body that orbits a planet or smaller body, which is called its primary. The two terms are used synonymously for non-artificial satellites of planets, of dwarf planets, and of minor planets....

s and binary star
Binary star
A binary star is a star system consisting of two stars orbiting around their common center of mass. The brighter star is called the primary and the other is its companion star, comes, or secondary...

s, stellar structure and evolution, N-body motions in clusters of stars
Star cluster
Star clusters or star clouds are groups of stars. Two types of star clusters can be distinguished: globular clusters are tight groups of hundreds of thousands of very old stars which are gravitationally bound, while open clusters, more loosely clustered groups of stars, generally contain less than...

 and galaxies
Galaxy groups and clusters
Galaxy groups and clusters are the largest known gravitationally bound objects to have arisen thus far in the process of cosmic structure formation. They form the densest part of the large scale structure of the universe...

, black hole
Black hole
A black hole is a region of spacetime from which nothing, not even light, can escape. The theory of general relativity predicts that a sufficiently compact mass will deform spacetime to form a black hole. Around a black hole there is a mathematically defined surface called an event horizon that...

s, and the expanding universe
Big Bang
The Big Bang theory is the prevailing cosmological model that explains the early development of the Universe. According to the Big Bang theory, the Universe was once in an extremely hot and dense state which expanded rapidly. This rapid expansion caused the young Universe to cool and resulted in...

.


The aim of astronomy is to understand the physics and chemistry from the laboratory that is behind cosmic events so as to enrich our understanding of the cosmos and of these sciences as well.

Integrating astronomy and chemistry

Astrochemistry, the overlap of the disciplines of astronomy
Astronomy
Astronomy is a natural science that deals with the study of celestial objects and phenomena that originate outside the atmosphere of Earth...

 and chemistry
Chemistry
Chemistry is the science of matter, especially its chemical reactions, but also its composition, structure and properties. Chemistry is concerned with atoms and their interactions with other atoms, and particularly with the properties of chemical bonds....

, is the study of the abundance and reactions of chemical elements and molecules in space, and their interaction with radiation. The formation, atomic and chemical composition, evolution and fate of molecular gas cloud
Molecular cloud
A molecular cloud, sometimes called a stellar nursery if star formation is occurring within, is a type of interstellar cloud whose density and size permits the formation of molecules, most commonly molecular hydrogen ....

s, is of special interest because it is from these clouds that solar systems form.

Infrared astronomy, for example, has revealed that the interstellar medium
Interstellar medium
In astronomy, the interstellar medium is the matter that exists in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, dust, and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space...

 contains a suite of complex gas-phase carbon compounds called aromatic hydrocarbons, often abbreviated (PAH
Polycyclic aromatic hydrocarbon
Polycyclic aromatic hydrocarbons , also known as poly-aromatic hydrocarbons or polynuclear aromatic hydrocarbons, are potent atmospheric pollutants that consist of fused aromatic rings and do not contain heteroatoms or carry substituents. Naphthalene is the simplest example of a PAH...

s or PACs). These molecules composed primarily of fused rings of carbon (either neutral or in an ionized state) are said to be the most common class of carbon compound in the galaxy. They are also the most common class of carbon molecule in meteorite
Meteorite
A meteorite is a natural object originating in outer space that survives impact with the Earth's surface. Meteorites can be big or small. Most meteorites derive from small astronomical objects called meteoroids, but they are also sometimes produced by impacts of asteroids...

s and in cometary and asteroidal dust (cosmic dust
Cosmic dust
Cosmic dust is a type of dust composed of particles in space which are a few molecules to 0.1 µm in size. Cosmic dust can be further distinguished by its astronomical location; for example: intergalactic dust, interstellar dust, interplanetary dust and circumplanetary dust .In our own Solar...

). These compounds, as well as the amino acids, nucleobases, and many other compounds in meteorites, carry deuterium and isotope
Isotope
Isotopes are variants of atoms of a particular chemical element, which have differing numbers of neutrons. Atoms of a particular element by definition must contain the same number of protons but may have a distinct number of neutrons which differs from atom to atom, without changing the designation...

s of carbon, nitrogen, and oxygen that are very rare on earth, attesting to their extraterrestrial origin. The PAHs are thought to form in hot circumstellar environments (around dying carbon rich red giant
Red giant
A red giant is a luminous giant star of low or intermediate mass in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius immense and the surface temperature low, somewhere from 5,000 K and lower...

 stars).

The sparseness of interstellar and interplanetary space results in some unusual chemistry, since symmetry-forbidden reactions cannot occur except on the longest of timescales. For this reason, molecules and molecular ions which are unstable on Earth can be highly abundant in space, for example the H3+
Protonated molecular hydrogen
Protonated molecular hydrogen, trihydrogen cation, or H3+, is one of the most abundant ions in the universe. It is stable in the interstellar medium due to the low temperature and low density of interstellar space. The role that H3+ plays in the gas-phase chemistry of the ISM is unparalleled by...

 ion. Astrochemistry overlaps with astrophysics
Astrophysics
Astrophysics is the branch of astronomy that deals with the physics of the universe, including the physical properties of celestial objects, as well as their interactions and behavior...

 and nuclear physics
Nuclear physics
Nuclear physics is the field of physics that studies the building blocks and interactions of atomic nuclei. The most commonly known applications of nuclear physics are nuclear power generation and nuclear weapons technology, but the research has provided application in many fields, including those...

 in characterizing the nuclear reactions which occur in stars, the consequences for stellar evolution
Stellar evolution
Stellar evolution is the process by which a star undergoes a sequence of radical changes during its lifetime. Depending on the mass of the star, this lifetime ranges from only a few million years to trillions of years .Stellar evolution is not studied by observing the life of a single...

, as well as stellar 'generations'. Indeed, the nuclear reactions in stars produce every naturally occurring chemical element
Chemical element
A chemical element is a pure chemical substance consisting of one type of atom distinguished by its atomic number, which is the number of protons in its nucleus. Familiar examples of elements include carbon, oxygen, aluminum, iron, copper, gold, mercury, and lead.As of November 2011, 118 elements...

. As the stellar 'generations' advance, the mass of the newly formed elements increases. A first-generation star uses elemental hydrogen
Hydrogen
Hydrogen is the chemical element with atomic number 1. It is represented by the symbol H. With an average atomic weight of , hydrogen is the lightest and most abundant chemical element, constituting roughly 75% of the Universe's chemical elemental mass. Stars in the main sequence are mainly...

 (H) as a fuel source and produces helium
Helium
Helium is the chemical element with atomic number 2 and an atomic weight of 4.002602, which is represented by the symbol He. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas that heads the noble gas group in the periodic table...

 (He). Hydrogen is the most abundant element, and it is the basic building block for all other elements as its nucleus has only one proton
Proton
The proton is a subatomic particle with the symbol or and a positive electric charge of 1 elementary charge. One or more protons are present in the nucleus of each atom, along with neutrons. The number of protons in each atom is its atomic number....

. Gravitational pull toward the center of a star creates massive amounts of heat and pressure, which cause nuclear fusion
Nuclear fusion
Nuclear fusion is the process by which two or more atomic nuclei join together, or "fuse", to form a single heavier nucleus. This is usually accompanied by the release or absorption of large quantities of energy...

. Through this process of merging nuclear mass, heavier elements are formed. Lithium
Lithium
Lithium is a soft, silver-white metal that belongs to the alkali metal group of chemical elements. It is represented by the symbol Li, and it has the atomic number 3. Under standard conditions it is the lightest metal and the least dense solid element. Like all alkali metals, lithium is highly...

, carbon
Carbon
Carbon is the chemical element with symbol C and atomic number 6. As a member of group 14 on the periodic table, it is nonmetallic and tetravalent—making four electrons available to form covalent chemical bonds...

, nitrogen
Nitrogen
Nitrogen is a chemical element that has the symbol N, atomic number of 7 and atomic mass 14.00674 u. Elemental nitrogen is a colorless, odorless, tasteless, and mostly inert diatomic gas at standard conditions, constituting 78.08% by volume of Earth's atmosphere...

 and oxygen
Oxygen
Oxygen is the element with atomic number 8 and represented by the symbol O. Its name derives from the Greek roots ὀξύς and -γενής , because at the time of naming, it was mistakenly thought that all acids required oxygen in their composition...

 are examples of elements that form in stellar fusion. After many stellar generations, very heavy elements are formed (e.g. iron
Iron
Iron is a chemical element with the symbol Fe and atomic number 26. It is a metal in the first transition series. It is the most common element forming the planet Earth as a whole, forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust...

 and lead
Lead
Lead is a main-group element in the carbon group with the symbol Pb and atomic number 82. Lead is a soft, malleable poor metal. It is also counted as one of the heavy metals. Metallic lead has a bluish-white color after being freshly cut, but it soon tarnishes to a dull grayish color when exposed...

).

Tools of theoretical astronomy

Theoretical astronomers use a wide variety of tools which include analytical models
Mathematical model
A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used not only in the natural sciences and engineering disciplines A mathematical model is a...

  (for example, polytropes to approximate the behaviors of a star
Star
A star is a massive, luminous sphere of plasma held together by gravity. At the end of its lifetime, a star can also contain a proportion of degenerate matter. The nearest star to Earth is the Sun, which is the source of most of the energy on Earth...

) and computation
Computation
Computation is defined as any type of calculation. Also defined as use of computer technology in Information processing.Computation is a process following a well-defined model understood and expressed in an algorithm, protocol, network topology, etc...

al numerical simulations
Numerical analysis
Numerical analysis is the study of algorithms that use numerical approximation for the problems of mathematical analysis ....

. Each has some advantages. Analytical models of a process are generally better for giving insight into the heart of what is going on. Numerical models can reveal the existence of phenomena and effects that would otherwise not be seen.

Astronomy theorists endeavor to create theoretical models and figure out the observational consequences of those models. This helps observers look for data that can refute a model or help in choosing between several alternate or conflicting models.

Theorists also try to generate or modify models to take into account new data. Consistent with the general scientific approach, in the case of an inconsistency, the general tendency is to try to make minimal modifications to the model to fit the data. In some cases, a large amount of inconsistent data over time may lead to total abandonment of a model.

Topics of theoretical astronomy

Topics studied by theoretical astronomers include:
  1. stellar dynamics
    Stellar dynamics
    Stellar dynamics is the branch of astrophysics which describes in a statistical way the collective motions of stars subject to their mutual gravity. The long range of gravity and the slow "relaxation" of stellar systems prevent the use of the methods of statistical physics...

     and evolution
    Stellar evolution
    Stellar evolution is the process by which a star undergoes a sequence of radical changes during its lifetime. Depending on the mass of the star, this lifetime ranges from only a few million years to trillions of years .Stellar evolution is not studied by observing the life of a single...

    ;
  2. galaxy formation
    Galaxy formation and evolution
    The study of galaxy formation and evolution is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby...

    ;
  3. large-scale structure  of matter
    Matter
    Matter is a general term for the substance of which all physical objects consist. Typically, matter includes atoms and other particles which have mass. A common way of defining matter is as anything that has mass and occupies volume...

      in the Universe
    Universe
    The Universe is commonly defined as the totality of everything that exists, including all matter and energy, the planets, stars, galaxies, and the contents of intergalactic space. Definitions and usage vary and similar terms include the cosmos, the world and nature...

    ;
  4. origin of cosmic ray
    Cosmic ray
    Cosmic rays are energetic charged subatomic particles, originating from outer space. They may produce secondary particles that penetrate the Earth's atmosphere and surface. The term ray is historical as cosmic rays were thought to be electromagnetic radiation...

    s;
  5. general relativity
    General relativity
    General relativity or the general theory of relativity is the geometric theory of gravitation published by Albert Einstein in 1916. It is the current description of gravitation in modern physics...

     and physical cosmology
    Physical cosmology
    Physical cosmology, as a branch of astronomy, is the study of the largest-scale structures and dynamics of the universe and is concerned with fundamental questions about its formation and evolution. For most of human history, it was a branch of metaphysics and religion...

    , including string
    String theory
    String theory is an active research framework in particle physics that attempts to reconcile quantum mechanics and general relativity. It is a contender for a theory of everything , a manner of describing the known fundamental forces and matter in a mathematically complete system...

     cosmology and astroparticle physics
    Astroparticle physics
    Astroparticle physics, the same as particle astrophysics, is that branch of particle physics that studies elementary particles of astronomical origin, and their relation to astrophysics and cosmology. It is a relatively new field of research emerging at the intersection of particle physics,...

    .


Astrophysical relativity serves as a tool to gauge the properties of large scale structures for which gravitation plays a significant role in physical phenomena investigated and as the basis for black hole
Black hole
A black hole is a region of spacetime from which nothing, not even light, can escape. The theory of general relativity predicts that a sufficiently compact mass will deform spacetime to form a black hole. Around a black hole there is a mathematically defined surface called an event horizon that...

 (astro)physics
Physics
Physics is a natural science that involves the study of matter and its motion through spacetime, along with related concepts such as energy and force. More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.Physics is one of the oldest academic...

 and the study of gravitational waves.

Astronomical models

Some widely accepted and studied theories and models in astronomy, now included in the Lambda-CDM model
Lambda-CDM model
ΛCDM or Lambda-CDM is an abbreviation for Lambda-Cold Dark Matter, which is also known as the cold dark matter model with dark energy...

 are the Big Bang
Big Bang
The Big Bang theory is the prevailing cosmological model that explains the early development of the Universe. According to the Big Bang theory, the Universe was once in an extremely hot and dense state which expanded rapidly. This rapid expansion caused the young Universe to cool and resulted in...

, Cosmic inflation
Cosmic inflation
In physical cosmology, cosmic inflation, cosmological inflation or just inflation is the theorized extremely rapid exponential expansion of the early universe by a factor of at least 1078 in volume, driven by a negative-pressure vacuum energy density. The inflationary epoch comprises the first part...

, dark matter
Dark matter
In astronomy and cosmology, dark matter is matter that neither emits nor scatters light or other electromagnetic radiation, and so cannot be directly detected via optical or radio astronomy...

, and fundamental theories of physics
Physics
Physics is a natural science that involves the study of matter and its motion through spacetime, along with related concepts such as energy and force. More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.Physics is one of the oldest academic...

.

A few examples of this process:
Physical process Experimental tool Theoretical model Explains/predicts
Gravitation
Gravitation
Gravitation, or gravity, is a natural phenomenon by which physical bodies attract with a force proportional to their mass. Gravitation is most familiar as the agent that gives weight to objects with mass and causes them to fall to the ground when dropped...

Radio telescope
Radio telescope
A radio telescope is a form of directional radio antenna used in radio astronomy. The same types of antennas are also used in tracking and collecting data from satellites and space probes...

s
Self-gravitating system
Nordtvedt effect
In theoretical astrophysics, the Nordtvedt effect refers to the relative motion between the Earth and the Moon which would be observed if the gravitational self-energy of a body contributed to its gravitational mass but not its inertial mass...

Emergence of a star system
Star system
A star system or stellar system is a small number of stars which orbit each other, bound by gravitational attraction. A large number of stars bound by gravitation is generally called a star cluster or galaxy, although, broadly speaking, they are also star systems.-Binary star systems:A stellar...

Nuclear fusion
Nuclear fusion
Nuclear fusion is the process by which two or more atomic nuclei join together, or "fuse", to form a single heavier nucleus. This is usually accompanied by the release or absorption of large quantities of energy...

Spectroscopy
Spectroscopy
Spectroscopy is the study of the interaction between matter and radiated energy. Historically, spectroscopy originated through the study of visible light dispersed according to its wavelength, e.g., by a prism. Later the concept was expanded greatly to comprise any interaction with radiative...

Stellar evolution
Stellar evolution
Stellar evolution is the process by which a star undergoes a sequence of radical changes during its lifetime. Depending on the mass of the star, this lifetime ranges from only a few million years to trillions of years .Stellar evolution is not studied by observing the life of a single...

How the stars shine and how metals formed
Nucleosynthesis
Nucleosynthesis is the process of creating new atomic nuclei from pre-existing nucleons . It is thought that the primordial nucleons themselves were formed from the quark–gluon plasma from the Big Bang as it cooled below two trillion degrees...

The Big Bang Hubble Space Telescope
Hubble Space Telescope
The Hubble Space Telescope is a space telescope that was carried into orbit by a Space Shuttle in 1990 and remains in operation. A 2.4 meter aperture telescope in low Earth orbit, Hubble's four main instruments observe in the near ultraviolet, visible, and near infrared...

, COBE
COBE
The COsmic Background Explorer , also referred to as Explorer 66, was a satellite dedicated to cosmology. Its goals were to investigate the cosmic microwave background radiation of the universe and provide measurements that would help shape our understanding of the cosmos.This work provided...

Expanding universe Age of the Universe
Age of the universe
The age of the universe is the time elapsed since the Big Bang posited by the most widely accepted scientific model of cosmology. The best current estimate of the age of the universe is 13.75 ± 0.13 billion years within the Lambda-CDM concordance model...

Quantum fluctuation
Quantum fluctuation
In quantum physics, a quantum fluctuation is the temporary change in the amount of energy in a point in space, arising from Werner Heisenberg's uncertainty principle.According to one formulation of the principle,energy and time can be related by the relation...

s
Cosmic inflation
Cosmic inflation
In physical cosmology, cosmic inflation, cosmological inflation or just inflation is the theorized extremely rapid exponential expansion of the early universe by a factor of at least 1078 in volume, driven by a negative-pressure vacuum energy density. The inflationary epoch comprises the first part...

Flatness problem
Gravitational collapse
Gravitational collapse
Gravitational collapse is the inward fall of a body due to the influence of its own gravity. In any stable body, this gravitational force is counterbalanced by the internal pressure of the body, in the opposite direction to the force of gravity...

X-ray astronomy
X-ray astronomy
X-ray astronomy is an observational branch of astronomy which deals with the study of X-ray observation and detection from astronomical objects. X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and...

General relativity
General relativity
General relativity or the general theory of relativity is the geometric theory of gravitation published by Albert Einstein in 1916. It is the current description of gravitation in modern physics...

Black hole
Black hole
A black hole is a region of spacetime from which nothing, not even light, can escape. The theory of general relativity predicts that a sufficiently compact mass will deform spacetime to form a black hole. Around a black hole there is a mathematically defined surface called an event horizon that...

s at the center of Andromeda galaxy
Andromeda Galaxy
The Andromeda Galaxy is a spiral galaxy approximately 2.5 million light-years from Earth in the constellation Andromeda. It is also known as Messier 31, M31, or NGC 224, and is often referred to as the Great Andromeda Nebula in older texts. Andromeda is the nearest spiral galaxy to the...

CNO cycle
CNO cycle
The CNO cycle is one of two sets of fusion reactions by which stars convert hydrogen to helium, the other being the proton–proton chain. Unlike the proton–proton chain reaction, the CNO cycle is a catalytic cycle. Theoretical models show that the CNO cycle is the dominant source of energy in stars...

 in star
Star
A star is a massive, luminous sphere of plasma held together by gravity. At the end of its lifetime, a star can also contain a proportion of degenerate matter. The nearest star to Earth is the Sun, which is the source of most of the energy on Earth...

s

Leading topics in theoretical astronomy

Dark matter
Dark matter
In astronomy and cosmology, dark matter is matter that neither emits nor scatters light or other electromagnetic radiation, and so cannot be directly detected via optical or radio astronomy...

 and dark energy
Dark energy
In physical cosmology, astronomy and celestial mechanics, dark energy is a hypothetical form of energy that permeates all of space and tends to accelerate the expansion of the universe. Dark energy is the most accepted theory to explain recent observations that the universe appears to be expanding...

 are the current leading topics in astronomy, as their discovery and controversy originated during the study of the galaxies.

Theoretical astrophysics

Of the topics approached with the tools of theoretical physics, particular consideration is often given to stellar photospheres, stellar atmospheres, the solar atmosphere, planetary atmospheres, gaseous nebulae, nonstationary stars, and the interstellar medium. Special attention is given to the internal structure of stars.

Weak equivalence principle

The observation of a neutrino burst within 3 h of the associated optical burst from Supernova 1987A in the Large Magellanic Cloud
Large Magellanic Cloud
The Large Magellanic Cloud is a nearby irregular galaxy, and is a satellite of the Milky Way. At a distance of slightly less than 50 kiloparsecs , the LMC is the third closest galaxy to the Milky Way, with the Sagittarius Dwarf Spheroidal and Canis Major Dwarf Galaxy lying closer to the center...

 (LMC) gave theoretical astrophysicists an opportunity to test that neutrinos and photons follow the same trajectories in the gravitational field of the galaxy.

Thermodynamics for stationary black holes

A general form of the first law of thermodynamics for stationary black hole
Black hole
A black hole is a region of spacetime from which nothing, not even light, can escape. The theory of general relativity predicts that a sufficiently compact mass will deform spacetime to form a black hole. Around a black hole there is a mathematically defined surface called an event horizon that...

s can be derived from the microcanonical functional integral for the gravitational field. The boundary data
  1. the gravitational field as described with a micocanonical system in a spatially finite region and
  2. the density of states expressed formally as a functional integral over Lorentzian metrics and as a functional of the geometrical boundary data that are fixed in the corresponding action,

are the thermodynamical extensive variables, including the energy and angular momentum of the system. For the simpler case of nonrelativistic mechanics as is often observed in astrophysical phenomena associated with a black hole event horizon, the density of states can be expressed as a real-time functional integral and subsequently used to deduce Feynman's imaginary-time functional integral for the canonical partition function.

Theoretical astrochemistry

Reaction equations and large reaction networks are an important tool in theoretical astrochemistry, especially as applied to the gas-grain chemistry of the interstellar medium. Theoretical astrochemistry offers the prospect of being able to place constraints on the inventory of organics for exogenous delivery to the early Earth.

Interstellar organics

"An important goal for theoretical astrochemistry is to elucidate which organics are of true interstellar origin, and to identify possible interstellar precursors and reaction pathways for those molecules which are the result of aqueous alterations." One of the ways this goal can be achieved is through the study of carbonaceous material as found in some meteorites. Carbonaceous chondrites (such as C1 and C2) include organic compounds such as amines and amides; alcohols, aldehydes, and ketones; aliphatic and aromatic hydrocarbons; sulfonic and phosphonic acids; amino, hydroxycarboxylic, and carboxylic acids; purines and pyrimidines; and kerogen
Kerogen
Kerogen is a mixture of organic chemical compounds that make up a portion of the organic matter in sedimentary rocks. It is insoluble in normal organic solvents because of the huge molecular weight of its component compounds. The soluble portion is known as bitumen. When heated to the right...

-type material. The organic inventories of primitive meteorites display large and variable enrichments in deuterium, 13C and 15N which is indicative of their retention of an interstellar heritage.

Chemistry in cometary comae

The chemical composition of comets should reflect both the conditions in the outer solar nebula some 4.5 x 109 ayr, and the nature of the natal interstellar cloud from which the Solar system
Solar System
The Solar System consists of the Sun and the astronomical objects gravitationally bound in orbit around it, all of which formed from the collapse of a giant molecular cloud approximately 4.6 billion years ago. The vast majority of the system's mass is in the Sun...

 was formed. While comets retain a strong signature of their ultimate interstellar origins, significant processing must have occurred in the protosolar nebula. Early models of coma chemistry showed that reactions can occur rapidly in the inner coma, where the most important reactions are proton transfer reactions. Such reactions can potentially cycle deuterium between the different coma molecules, altering the initial D/H ratios released from the nuclear ice, and necessitating the construction of accurate models of cometary deuterium chemistry, so that gas-phase coma observations can be safely extrapolated to give nuclear D/H ratios.

Theoretical chemical astronomy

While the lines of conceptual understanding between theoretical astrochemistry and theoretical chemical astronomy often become blurred so that the goals and tools are the same, there are subtle differences between the two sciences. Theoretical chemistry as applied to astronomy seeks to find new ways to observe chemicals in celestial objects, for example. This often leads to theoretical astrochemistry having to seek new ways to describe or explain those same observations.

Astronomical spectroscopy

The new era of chemical astronomy had to await the clear enunciation of the chemical principles of spectroscopy and the applicable theory.

Chemistry of dust condensation

Supernova radioactivity dominates light curves and the chemistry of dust condensation is also dominated by radioactivity. Dust is usually either carbon or oxides depending on which is more abundant, but Compton electrons dissociate the CO molecule in about one month. The new chemical astronomy of supernova solids depends on the supernova radioactivity:
  1. the radiogenesis of 44Ca from 44Ti decay after carbon condensation establishes their supernova source,
  2. their opacity suffices to shift emission lines blueward after 500 d and emits significant infrared luminosity,
  3. parallel kinetic rates determine trace isotopes in meteoritic supernova graphites,
  4. the chemistry is kinetic rather than due to thermal equilibrium and
  5. is made possible by radiodeactivation of the CO trap for carbon.

Theoretical physical astronomy

Like theoretical chemical astronomy, the lines of conceptual understanding between theoretical astrophysics and theoretical physical astronomy are often blurred, but, again, there are subtle differences between these two sciences. Theoretical physics as applied to astronomy seeks to find new ways to observe physical phenomena in celestial objects and what to look for, for example. This often leads to theoretical astrophysics having to seek new ways to describe or explain those same observations, with hopefully a convergence to improve our understanding of the local environment of Earth and the physical Universe
Universe
The Universe is commonly defined as the totality of everything that exists, including all matter and energy, the planets, stars, galaxies, and the contents of intergalactic space. Definitions and usage vary and similar terms include the cosmos, the world and nature...

.

Weak interaction and nuclear double beta decay

Nuclear matrix elements of relevant operators as extracted from data and from a shell-model and theoretical approximations both for the two-neutrino and neutrinoless modes of decay are used to explain the weak interaction and nuclear structure aspects of nuclear double beta decay.

Neutron-rich isotopes

New neutron-rich isotopes, 34Ne, 37Na, and 43Si have been produced unambiguously for the first time, and convincing evidence for the particle instability of three others, 33Ne, 36Na, and 39Mg has been obtained. These experimental findings compare with recent theoretical predictions.

Theory of astronomical time keeping

Until recently all the time units that appear natural to us are caused by astronomical phenomena:
  1. Earth's orbit around the Sun => the year, and the seasons,
  2. Moon
    Moon
    The Moon is Earth's only known natural satellite,There are a number of near-Earth asteroids including 3753 Cruithne that are co-orbital with Earth: their orbits bring them close to Earth for periods of time but then alter in the long term . These are quasi-satellites and not true moons. For more...

    's orbit around the Earth => the month,
  3. Earth's rotation and the succession of brightness and darkness => the day (and night).


High precision appears problematic:
  1. amibiguities arise in the exact definition of a rotation or revolution,
  2. some astronomical processes are uneven and irregular, such as the noncommensurability of year, month, and day,
  3. there are a multitude of time scales and calendars to solve the first two problems.


Some of these time scales are sidereal time
Sidereal time
Sidereal time is a time-keeping system astronomers use to keep track of the direction to point their telescopes to view a given star in the night sky...

, solar time
Solar time
Solar time is a reckoning of the passage of time based on the Sun's position in the sky. The fundamental unit of solar time is the day. Two types of solar time are apparent solar time and mean solar time .-Introduction:...

, and universal time
Universal Time
Universal Time is a time scale based on the rotation of the Earth. It is a modern continuation of Greenwich Mean Time , i.e., the mean solar time on the Prime Meridian at Greenwich, and GMT is sometimes used loosely as a synonym for UTC...

.

Atomic time

From the Systeme Internationale
International System of Units
The International System of Units is the modern form of the metric system and is generally a system of units of measurement devised around seven base units and the convenience of the number ten. The older metric system included several groups of units...

 (SI) comes the second as defined by the duration of 9 192 631 770 cycles of a particular hyperfine structure transition in the ground state of 133Cesium. For practical usability a device is required that attempts to produce the SI second (s) such as an atomic clock
Atomic clock
An atomic clock is a clock that uses an electronic transition frequency in the microwave, optical, or ultraviolet region of the electromagnetic spectrum of atoms as a frequency standard for its timekeeping element...

. But not all such clocks agree. The weighted mean of many clocks distributed over the whole Earth defines the Temps Atomique International
International Atomic Time
International Atomic Time is a high-precision atomic coordinate time standard based on the notional passage of proper time on Earth's geoid...

; i.e., the Atomic Time TAI. From the General theory of relativity the time measured depends on the altitude on Earth and the spatial velocity of the clock so that TAI refers to a location on sea level that rotates with the Earth.

Ephemeris time

Since the Earth's rotation is irregular, any time scale derived from it such as Greenwich Mean Time
Greenwich Mean Time
Greenwich Mean Time is a term originally referring to mean solar time at the Royal Observatory in Greenwich, London. It is arguably the same as Coordinated Universal Time and when this is viewed as a time zone the name Greenwich Mean Time is especially used by bodies connected with the United...

 led to recurring problems in predicting the Ephemerides
Ephemeris
An ephemeris is a table of values that gives the positions of astronomical objects in the sky at a given time or times. Different kinds of ephemerides are used for astronomy and astrology...

 for the positions of the Moon
Moon
The Moon is Earth's only known natural satellite,There are a number of near-Earth asteroids including 3753 Cruithne that are co-orbital with Earth: their orbits bring them close to Earth for periods of time but then alter in the long term . These are quasi-satellites and not true moons. For more...

, Sun
Sun
The Sun is the star at the center of the Solar System. It is almost perfectly spherical and consists of hot plasma interwoven with magnetic fields...

, planet
Planet
A planet is a celestial body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and has cleared its neighbouring region of planetesimals.The term planet is ancient, with ties to history, science,...

s and their natural satellite
Natural satellite
A natural satellite or moon is a celestial body that orbits a planet or smaller body, which is called its primary. The two terms are used synonymously for non-artificial satellites of planets, of dwarf planets, and of minor planets....

s. In 1976 the International Astronomical Union
International Astronomical Union
The International Astronomical Union IAU is a collection of professional astronomers, at the Ph.D. level and beyond, active in professional research and education in astronomy...

 (IAU) resolved that the theoretical basis for ephemeris time (ET) was wholly non-relativistic, and therefore, beginning in 1984 ephemeris time would be replaced by two further time scales with allowance for relativistic corrections. Their names, assigned in 1979, emphasized their dynamical nature or origin, Barycentric Dynamical Time
Barycentric Dynamical Time
Barycentric Dynamical Time is a relativistic coordinate time scale, intended for astronomical use as a time standard to take account of time dilation when calculating orbits and astronomical ephemerides of planets, asteroids, comets and interplanetary spacecraft in the Solar system...

 (TDB) and Terrestrial Dynamical Time (TDT). Both were defined for continuity with ET and were based on what had become the standard SI second, which in turn had been derived from the measured second of ET.

During the period 1991–2006, the TDB and TDT time scales were both redefined and replaced, owing to difficulties or inconsistencies in their original definitions. The current fundamental relativistic time scales are Geocentric Coordinate Time
Geocentric Coordinate Time
Geocentric Coordinate Time is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to precession, nutation, the Moon, and artificial satellites of the Earth...

 (TCG) and Barycentric Coordinate Time
Barycentric Coordinate Time
Barycentric Coordinate Time is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to orbits of planets, asteroids, comets, and interplanetary spacecraft in the Solar system...

 (TCB). Both of these have rates that are based on the SI second in respective reference frames (and hypothetically outside the relevant gravity well), but due to relativistic effects, their rates would appear slightly faster when observed at the Earth's surface, and therefore diverge from local Earth-based time scales using the SI second at the Earth's surface.

The currently defined IAU time scales also include Terrestrial Time
Terrestrial Time
Terrestrial Time is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of the Earth....

 (TT) (replacing TDT, and now defined as a re-scaling of TCG, chosen to give TT a rate that matches the SI second when observed at the Earth's surface), and a redefined Barycentric Dynamical Time (TDB), a re-scaling of TCB to give TDB a rate that matches the SI second at the Earth's surface.

Stellar dynamical time scale

For a star
Star
A star is a massive, luminous sphere of plasma held together by gravity. At the end of its lifetime, a star can also contain a proportion of degenerate matter. The nearest star to Earth is the Sun, which is the source of most of the energy on Earth...

, the dynamical time scale is defined as the time that would be taken for a test particle released at the surface to fall under the star
Star
A star is a massive, luminous sphere of plasma held together by gravity. At the end of its lifetime, a star can also contain a proportion of degenerate matter. The nearest star to Earth is the Sun, which is the source of most of the energy on Earth...

's potential to the centre point, if pressure forces were negligible. In other words, the dynamical time scale measures the amount of time it would take a certain star
Star
A star is a massive, luminous sphere of plasma held together by gravity. At the end of its lifetime, a star can also contain a proportion of degenerate matter. The nearest star to Earth is the Sun, which is the source of most of the energy on Earth...

 to collapse in the absence of any internal pressure
Internal pressure
Internal pressure is a measure of how the internal energy of a system changes when it expands or contracts at constant temperature. It has the same dimensions as pressure, the SI unit of which is 1 pascal.Internal pressure is usually given the symbol \pi_T...

. By appropriate manipulation of the equations of stellar structure this can be found to be



where R is the radius
Radius
In classical geometry, a radius of a circle or sphere is any line segment from its center to its perimeter. By extension, the radius of a circle or sphere is the length of any such segment, which is half the diameter. If the object does not have an obvious center, the term may refer to its...

 of the star, G is the gravitational constant
Gravitational constant
The gravitational constant, denoted G, is an empirical physical constant involved in the calculation of the gravitational attraction between objects with mass. It appears in Newton's law of universal gravitation and in Einstein's theory of general relativity. It is also known as the universal...

, M is the mass
Mass
Mass can be defined as a quantitive measure of the resistance an object has to change in its velocity.In physics, mass commonly refers to any of the following three properties of matter, which have been shown experimentally to be equivalent:...

 of the star and v is the escape velocity
Escape velocity
In physics, escape velocity is the speed at which the kinetic energy plus the gravitational potential energy of an object is zero gravitational potential energy is negative since gravity is an attractive force and the potential is defined to be zero at infinity...

. As an example, the Sun
Sun
The Sun is the star at the center of the Solar System. It is almost perfectly spherical and consists of hot plasma interwoven with magnetic fields...

 dynamical time scale is approximately 1133 seconds. Note that the actual time it would take a star like the Sun to collapse is greater because internal pressure is present.

The 'fundamental' oscillatory mode of a star will be at approximately the dynamical time scale. Oscillations at this frequency are seen in Cepheid variables.

On Earth

The basic characteristics of applied astronomical navigation are
  1. usable in all areas of sailing around the Earth,
  2. applicable autonomously (does not depend on others – persons or states) and passively (does not emit energy),
  3. conditional usage via optical visibility (of horizon and celestial bodies), or state of cloudiness,
  4. precisional measurement, sextant is 0.1', altitude and position is between 1.5' and 3.0'.
  5. temporal determination takes a couple of minutes (using the most modern equipment) and ≤ 30 min (using classical equipment).


The superiority of satellite navigation systems to astronomical navigation are currently undeniable, especially with the development and use of GPS/NAVSTAR. This global satellite system
  1. enables automated three dimensional positioning at any moment,
  2. automatically determines position continuously (every second or even more often),
  3. determines position independent of weather conditions (visibility and cloudiness),
  4. determines position in real time to a few meters (two carrying frequencies) and 100 m (modest commercial receivers), which is two to three orders of magnitude better than by astronomical observation,
  5. is simple even without expert knowledge,
  6. is relatively cheap, comparable to equipment for astronomical navigation, and
  7. allows incorporation into integrated and automated systems of control and ship steering. The use of astronomical or celestial navigation is disappearing from the surface and beneath or above the surface of the Earth.


Geodetic astronomy is the application of astronomical
Astronomy
Astronomy is a natural science that deals with the study of celestial objects and phenomena that originate outside the atmosphere of Earth...

 methods into networks and technical projects of geodesy
Geodesy
Geodesy , also named geodetics, a branch of earth sciences, is the scientific discipline that deals with the measurement and representation of the Earth, including its gravitational field, in a three-dimensional time-varying space. Geodesists also study geodynamical phenomena such as crustal...

 for
  • apparent places
    Apparent places
    The wrong place of an object is the position in space as seen by the observer. Because of physical and/or geometrical effects it has a deviation from the "true position"....

     of stars, and their proper motion
    Proper motion
    The proper motion of a star is its angular change in position over time as seen from the center of mass of the solar system. It is measured in seconds of arc per year, arcsec/yr, where 3600 arcseconds equal one degree. This contrasts with radial velocity, which is the time rate of change in...

    s
  • precise astronomical navigation
  • astro-geodetic geoid
    Geoid
    The geoid is that equipotential surface which would coincide exactly with the mean ocean surface of the Earth, if the oceans were in equilibrium, at rest , and extended through the continents . According to C.F...

     determination and
  • modelling the rock densities
    Density
    The mass density or density of a material is defined as its mass per unit volume. The symbol most often used for density is ρ . In some cases , density is also defined as its weight per unit volume; although, this quantity is more properly called specific weight...

     of the topography and of geological layers in the subsurface
    Subsurface
    Subsurface is the seventh studio album by British progressive metal band Threshold. The album was released in August 2004, and received an Album of the Month award in several European music magazines....

  • Satellite geodesy
    Satellite geodesy
    Satellite geodesy is the measurement of the form and dimensions of the Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques—geodesy by means of artificial satellites...

     using the stellar background (see also astrometry
    Astrometry
    Astrometry is the branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies. The information obtained by astrometric measurements provides information on the kinematics and physical origin of our Solar System and our Galaxy, the Milky...

     and cosmic triangulation)
  • Monitoring of the Earth rotation
    Earth rotation
    Earth's rotation is the rotation of the solid Earth around its own axis. The Earth rotates towards the east. As viewed from the North Star Polaris, the Earth turns counter-clockwise.- Rotation period :...

     and polar wandering
  • Contribution to the time system of physics and geosciences


Astronomical algorithms are the algorithm
Algorithm
In mathematics and computer science, an algorithm is an effective method expressed as a finite list of well-defined instructions for calculating a function. Algorithms are used for calculation, data processing, and automated reasoning...

s used to calculate ephemerides
Ephemeris
An ephemeris is a table of values that gives the positions of astronomical objects in the sky at a given time or times. Different kinds of ephemerides are used for astronomy and astrology...

, calendar
Calendar
A calendar is a system of organizing days for social, religious, commercial, or administrative purposes. This is done by giving names to periods of time, typically days, weeks, months, and years. The name given to each day is known as a date. Periods in a calendar are usually, though not...

s, and positions (as in celestial navigation
Celestial navigation
Celestial navigation, also known as astronavigation, is a position fixing technique that has evolved over several thousand years to help sailors cross oceans without having to rely on estimated calculations, or dead reckoning, to know their position...

 or satellite navigation).

Many astronomical and navigational computations use the Figure of the Earth
Figure of the Earth
The expression figure of the Earth has various meanings in geodesy according to the way it is used and the precision with which the Earth's size and shape is to be defined. The actual topographic surface is most apparent with its variety of land forms and water areas. This is, in fact, the surface...

 as a surface representing the Earth.

The International Earth Rotation and Reference Systems Service
International Earth Rotation and Reference Systems Service
The International Earth Rotation and Reference Systems Service , formerly the International Earth Rotation Service, is the body responsible for maintaining global time and reference frame standards, notably through its Earth Orientation Parameter and International Celestial Reference System ...

 (IERS), formerly the International Earth Rotation Service, is the body responsible for maintaining global time and reference frame
Frame of reference
A frame of reference in physics, may refer to a coordinate system or set of axes within which to measure the position, orientation, and other properties of objects in it, or it may refer to an observational reference frame tied to the state of motion of an observer.It may also refer to both an...

 standards, notably through its Earth Orientation Parameter (EOP) and International Celestial Reference System
International Celestial Reference System
The International Celestial Reference System is the current standard celestial reference system adopted by the International Astronomical Union . Its origin is at the barycenter of the solar system, with axes that are intended to be "fixed" with respect to space...

 (ICRS) groups.

Deep space

The Deep Space Network, or DSN, is an international network of large antennas and communication facilities that supports interplanetary spacecraft
Spacecraft
A spacecraft or spaceship is a craft or machine designed for spaceflight. Spacecraft are used for a variety of purposes, including communications, earth observation, meteorology, navigation, planetary exploration and transportation of humans and cargo....

 missions, and radio
Radio astronomy
Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies. The initial detection of radio waves from an astronomical object was made in the 1930s, when Karl Jansky observed radiation coming from the Milky Way. Subsequent observations have identified a number of...

 and radar astronomy
Radar astronomy
Radar astronomy is a technique of observing nearby astronomical objects by reflecting microwaves off target objects and analyzing the echoes. This research has been conducted for six decades. Radar astronomy differs from radio astronomy in that the latter is a passive observation and the former an...

 observations for the exploration of the solar system
Solar System
The Solar System consists of the Sun and the astronomical objects gravitationally bound in orbit around it, all of which formed from the collapse of a giant molecular cloud approximately 4.6 billion years ago. The vast majority of the system's mass is in the Sun...

 and the universe
Universe
The Universe is commonly defined as the totality of everything that exists, including all matter and energy, the planets, stars, galaxies, and the contents of intergalactic space. Definitions and usage vary and similar terms include the cosmos, the world and nature...

. The network also supports selected Earth-orbiting missions. DSN is part of the NASA
NASA
The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation's civilian space program and for aeronautics and aerospace research...

 Jet Propulsion Laboratory
Jet Propulsion Laboratory
Jet Propulsion Laboratory is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. The facility is headquartered in the city of Pasadena on the border of La Cañada Flintridge and Pasadena...

 (JPL).

Aboard an exploratory vehicle

An observer becomes a deep space explorer upon escaping Earth's orbit. While the Deep Space Network
Deep Space Network
The Deep Space Network, or DSN, is a world-wide network of large antennas and communication facilities that supports interplanetary spacecraft missions. It also performs radio and radar astronomy observations for the exploration of the solar system and the universe, and supports selected...

 maintains communication and enables data download from an exploratory vessel, any local probing performed by sensors or active systems aboard usually require astronomical navigation, since the enclosing network of satellites to ensure accurate positioning is absent.

See also

  • Astronomy
    Astronomy
    Astronomy is a natural science that deals with the study of celestial objects and phenomena that originate outside the atmosphere of Earth...

  • Astrochemistry
    Astrochemistry
    Astrochemistry is the study of the abundance and reactions of chemical elements and molecules in the universe, and their interaction with radiation. The discipline is an overlap of astronomy and chemistry. The word "astrochemistry" may be applied to both the Solar System and the interstellar medium...

  • Astrophysics
    Astrophysics
    Astrophysics is the branch of astronomy that deals with the physics of the universe, including the physical properties of celestial objects, as well as their interactions and behavior...

  • Orbital mechanics
  • Celestial mechanics
    Celestial mechanics
    Celestial mechanics is the branch of astronomy that deals with the motions of celestial objects. The field applies principles of physics, historically classical mechanics, to astronomical objects such as stars and planets to produce ephemeris data. Orbital mechanics is a subfield which focuses on...

  • Astrometry
    Astrometry
    Astrometry is the branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies. The information obtained by astrometric measurements provides information on the kinematics and physical origin of our Solar System and our Galaxy, the Milky...

  • Celestial navigation
    Celestial navigation
    Celestial navigation, also known as astronavigation, is a position fixing technique that has evolved over several thousand years to help sailors cross oceans without having to rely on estimated calculations, or dead reckoning, to know their position...

  • Celestial sphere
    Celestial sphere
    In astronomy and navigation, the celestial sphere is an imaginary sphere of arbitrarily large radius, concentric with the Earth and rotating upon the same axis. All objects in the sky can be thought of as projected upon the celestial sphere. Projected upward from Earth's equator and poles are the...


External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK