Trapped ion quantum computers
Encyclopedia
A trapped ion quantum computer is a type of quantum computer
Quantum computer
A quantum computer is a device for computation that makes direct use of quantum mechanical phenomena, such as superposition and entanglement, to perform operations on data. Quantum computers are different from traditional computers based on transistors...

. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information
Quantum information
In quantum mechanics, quantum information is physical information that is held in the "state" of a quantum system. The most popular unit of quantum information is the qubit, a two-level quantum system...

 can be processed and transferred through the collective quantized motion of the ions in the trap (interacting through the Coulomb force). Lasers are applied to induce coupling
Coupling (physics)
In physics, two systems are coupled if they are interacting with each other. Of special interest is the coupling of two vibratory systems by means of springs or magnetic fields, etc...

 between the qubit states (for single qubit operations) or coupling between the internal qubit states and the external motional states (for entanglement between qubits).

The fundamental operations of a quantum computer have been demonstrated experimentally with high accuracy (or "high fidelity" in quantum computing language) in trapped ion systems and a strategy has been developed for scaling the system to arbitrarily large numbers of qubits by shuttling ions in an array of ion traps. This makes the trapped ion quantum computer system one of the most promising architectures for a scalable, universal quantum computer
Quantum computer
A quantum computer is a device for computation that makes direct use of quantum mechanical phenomena, such as superposition and entanglement, to perform operations on data. Quantum computers are different from traditional computers based on transistors...

. As of May 2011, the largest number of particles to be controllably entangled is 14 trapped ions.

History of the Paul trap

The electrodynamic trap currently used in trapped ion quantum computing research was invented in the 1950s by Wolfgang Paul
Wolfgang Paul
Wolfgang Paul was a German physicist, who co-developed the non-magnetic quadrupole mass filter which laid the foundation for what we now call an ion trap...

 (who received the Nobel Prize
Nobel Prize
The Nobel Prizes are annual international awards bestowed by Scandinavian committees in recognition of cultural and scientific advances. The will of the Swedish chemist Alfred Nobel, the inventor of dynamite, established the prizes in 1895...

 in 1989 for his work). Charged particles cannot be trapped in 3D just by electrostatic forces because of Earnshaw's theorem
Earnshaw's theorem
Earnshaw's theorem states that a collection of point charges cannot be maintained in a stable stationary equilibrium configuration solely by the electrostatic interaction of the charges. This was first proven by British mathematician Samuel Earnshaw in 1842. It is usually referenced to magnetic...

, since Laplace's equation
Laplace's equation
In mathematics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace who first studied its properties. This is often written as:where ∆ = ∇² is the Laplace operator and \varphi is a scalar function...

 for electrostatics does not allow confining potentials in all three orthogonal directions. Instead, an electric field oscillating at radio frequency
Radio frequency
Radio frequency is a rate of oscillation in the range of about 3 kHz to 300 GHz, which corresponds to the frequency of radio waves, and the alternating currents which carry radio signals...

 (RF) is applied, forming a potential with the shape of a saddle spinning at the RF frequency. If the RF field has the right parameters (oscillation frequency and field strength), the charged particle cannot leave the central region of this saddle potential because of inertia
Inertia
Inertia is the resistance of any physical object to a change in its state of motion or rest, or the tendency of an object to resist any change in its motion. It is proportional to an object's mass. The principle of inertia is one of the fundamental principles of classical physics which are used to...

, and become effectively trapped at the saddle point
Saddle point
In mathematics, a saddle point is a point in the domain of a function that is a stationary point but not a local extremum. The name derives from the fact that in two dimensions the surface resembles a saddle that curves up in one direction, and curves down in a different direction...

. The particle's motion is described by a set of Mathieu equations
Mathieu function
In mathematics, the Mathieu functions are certain special functions useful for treating a variety of problems in applied mathematics, including*vibrating elliptical drumheads,*quadrupoles mass filters and quadrupole ion traps for mass spectrometry...

 in this situation.

History of trapped ion quantum computing

The first implementation scheme for a controlled-NOT quantum gate
Quantum gate
In quantum computing and specifically the quantum circuit model of computation, a quantum gate is a basic quantum circuit operating on a small number of qubits. They are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits.Unlike many classical...

 was proposed by Ignacio Cirac and Peter Zoller
Peter Zoller
Peter Zoller is a theoretical physicist from Austria. He is Professor at the University of Innsbruck and works on quantum optics and quantum information and is best known for his pioneering research on quantum computing and quantum communication and for bridging quantum optics and solid state...

 in 1995, specifically for the trapped ion system. The same year, a key step in the controlled-NOT gate was experimentally realized at NIST Ion Storage Group, and research in quantum computing began to take off worldwide. Many traditional ion trapping research groups have made the transition to quantum computing research, while, more recently, many other new research groups have joined the effort. An enormous amount of progress in this field has been made in the past decade and trapped ions remain a leading candidate for quantum computation.

Components of a quantum computer

  • Qubits Any two-level quantum system can form a qubit, and there are two ways to form a qubit using the electronic states of an ion:

1) Two ground state hyperfine levels (these are called "hyperfine qubits")
2) A ground state level and an excited level (these are called the "optical qubits")

Hyperfine qubits are extremely long-lived (decay time of the order of thousands to millions of years) and phase/frequency stable (traditionally used for atomic frequency standards). Optical qubits are also relatively long-lived (with a decay time of the order of a second), compared to the logic gate operation time (which is of the order of microseconds). The use of each type of qubit poses its own distinct challenges in the laboratory.

  • Initialization Ions can be prepared in a specific qubit state using a process called optical pumping
    Optical pumping
    Optical pumping is a process in which light is used to raise electrons from a lower energy level in an atom or molecule to a higher one. It is commonly used in laser construction, to pump the active laser medium so as to achieve population inversion...

    . In this process, a laser couples the ion to some excited states which eventually decay to one state which is not coupled to by the laser. Once the ion reaches that state, it has no excited levels to couple to in the presence of that laser and, therefore, remains in that state. If the ion decays to one of the other states, the laser will continue to excite the ion until it decays to the state that does not interact with the laser. This initialization process is standard in many physics experiments and can be performed with extremely high fidelity (>99.9%).

  • Measurement Measuring the state of the qubit stored in an ion is quite simple. Typically, a laser is applied to the ion that couples only one of the qubit states. When the ion collapses into this state during the measurement process, the laser will excite it, resulting in a photon being released when the ion decays from the excited state. After decay, the ion is continually excited by the laser and repeatedly emits photons. These photons can be collected by a photomultiplier tube
    Photomultiplier
    Photomultiplier tubes , members of the class of vacuum tubes, and more specifically phototubes, are extremely sensitive detectors of light in the ultraviolet, visible, and near-infrared ranges of the electromagnetic spectrum...

     (PMT) or a charge-coupled device
    Charge-coupled device
    A charge-coupled device is a device for the movement of electrical charge, usually from within the device to an area where the charge can be manipulated, for example conversion into a digital value. This is achieved by "shifting" the signals between stages within the device one at a time...

     (CCD) camera. If the ion collapses into the other qubit state, then it does not interact with the laser and no photon is emitted. By counting the number of collected photons, the state of the ion may be determined with a very high accuracy (>99.9%).

  • Arbitrary Single Qubit Rotation One of the requirements of universal quantum computing is to coherently change the state of a single qubit. For example, this can transform a qubit starting out in 0 into any arbitrary superposition of 0 and 1 defined by the user. In a trapped ion system, this is often done using magnetic dipole transitions or stimulated Raman transitions for hyperfine qubits and electric quadrupole transitions for optical qubits. The term "rotation" alludes to the Bloch sphere
    Bloch sphere
    In quantum mechanics, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system , named after the physicist Felix Bloch....

     representation of a qubit pure state. Gate fidelity can be greater than 99%.

  • Two Qubit Entangling Gates Besides the controlled-NOT gate proposed by Cirac and Zoller in 1995, many equivalent, but more robust, schemes have been proposed and implemented experimentally since. Recent theoretical work by Garcia-Ripoll, Cirac, and Zoller have shown that there are no fundamental limitations to the speed of entangling gates, but gates in this impulsive regime (faster than 1 microsecond) have not yet been demonstrated experimentally (current gate operation time is of the order of microseconds). The fidelity of these implementations has been greater than 97%.

  • Scalable Trap Designs Several groups have successfully fabricated ion traps with multiple trap regions and have shuttled ions between different trap zones. Ions can be separated from the same interaction region to individual storage regions and brought back together without losing the quantum information stored in their internal states. Ions can also be made to turn corners at a "T" junction, allowing a two dimensional trap array design. Semiconductor fabrication techniques have also been employed to manufacture the new generation of traps, making the 'ion trap on a chip' a reality. These developments bring great promise to making a 'quantum charged-coupled device' (QCCD) for quantum computation using a large number of qubits.

Experimental research groups

Here is a (possibly not exhaustive) list of experimental groups researching trapped ion quantum computing:

Recent developments


  • D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, " Entanglement of single-atom quantum bits at a distance" Nature 449, 68 (2007).


  • D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle and D. J. Wineland, "Creation of a six-atom 'Schrödinger cat' state" Nature 438, 639 (2005).

  • H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür and R. Blatt, "Scalable multiparticle entanglement of trapped ions" Nature 438, 643 (2005).

  • J. Chiaverini, J. Britton, D. Leibfried, E. Knill, M. D. Barrett, R. B. Blakestad, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, T. Schaetz, and D.J. Wineland, "Implementation of the semiclassical quantum Fourier transform in a scalable system" Science 308, 997-1000 (2005).

  • B. B. Blinov, D. L. Moehring, L.- M. Duan and C. Monroe, "Observation of entanglement between a single trapped atom and a single photon" Nature 428, 153-157 (2004).

  • J. Chiaverini, D. Leibried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, and D.J. Wineland, "Realization of quantum error correction" Nature 432, 602-605 (2004).

  • M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, R. Blatt. "Deterministic quantum teleportation with atoms" Nature 429, 734 (2004).

  • M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W.M. Itano, J.D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D.J. Wineland, "Deterministic quantum teleportation of atomic qubits" Nature 429, 737-739 (2004).

  • C. F. Roos, M. Riebe, H. Häffner, W. Hänsel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, R. Blatt."Control and measurement of three-qubit entangled state" Science 304, 1478 (2004).
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK