Yamabe flow
Encyclopedia
In differential geometry, the Yamabe flow is an intrinsic geometric flow
Geometric flow
In mathematics, specifically differential geometry, a geometric flow is the gradient flow associated to a functional on a manifold which has a geometric interpretation, usually associated with some extrinsic or intrinsic curvature...

—a process which deforms the metric
Metric tensor
In the mathematical field of differential geometry, a metric tensor is a type of function defined on a manifold which takes as input a pair of tangent vectors v and w and produces a real number g in a way that generalizes many of the familiar properties of the dot product of vectors in Euclidean...

 of a Riemannian manifold
Riemannian manifold
In Riemannian geometry and the differential geometry of surfaces, a Riemannian manifold or Riemannian space is a real differentiable manifold M in which each tangent space is equipped with an inner product g, a Riemannian metric, which varies smoothly from point to point...

.
It is the negative L2-gradient flow of the (normalized) total scalar curvature
Scalar curvature
In Riemannian geometry, the scalar curvature is the simplest curvature invariant of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the intrinsic geometry of the manifold near that point...

, restricted to a given conformal class: it can be interpreted as deforming a Riemannian metric to a conformal metric of constant scalar curvature, when this flow converges.

It was introduced by Richard Hamilton
Richard Hamilton (professor)
Richard Streit Hamilton is Davies Professor of mathematics at Columbia University.He received his B.A in 1963 from Yale University and Ph.D. in 1966 from Princeton University. Robert Gunning supervised his thesis...

 shortly after the Ricci flow
Ricci flow
In differential geometry, the Ricci flow is an intrinsic geometric flow. It is a process that deforms the metric of a Riemannian manifold in a way formally analogous to the diffusion of heat, smoothing out irregularities in the metric....

, as an approach to solve the Yamabe problem
Yamabe problem
The Yamabe problem in differential geometry concerns the existence of Riemannian metrics with constant scalar curvature, and takes its name from the mathematician Hidehiko Yamabe. Although claimed to have a solution in 1960, a critical error...

 on manifolds of positive conformal Yamabe invariant
Yamabe invariant
In mathematics, in the field of differential geometry, the Yamabe invariant is a real number invariant associated to a smooth manifold that is preserved under diffeomorphisms. It was first written down independently by O. Kobayashi and R. Schoen and takes its name from H...

.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK