Frequentist inference
Encyclopedia
Frequentist inference is one of a number of possible ways of formulating generally applicable schemes for making statistical inference
Statistical inference
In statistics, statistical inference is the process of drawing conclusions from data that are subject to random variation, for example, observational errors or sampling variation...

s: that is, for drawing conclusions from statistical samples
Sample (statistics)
In statistics, a sample is a subset of a population. Typically, the population is very large, making a census or a complete enumeration of all the values in the population impractical or impossible. The sample represents a subset of manageable size...

. An alternative name is frequentist statistics. This is the inference framework in which the well-established methodologies of statistical hypothesis testing
Statistical hypothesis testing
A statistical hypothesis test is a method of making decisions using data, whether from a controlled experiment or an observational study . In statistics, a result is called statistically significant if it is unlikely to have occurred by chance alone, according to a pre-determined threshold...

 and confidence intervals are based. Other than frequentistic inference, the main alternative approach to statistical inference is Bayesian inference
Bayesian inference
In statistics, Bayesian inference is a method of statistical inference. It is often used in science and engineering to determine model parameters, make predictions about unknown variables, and to perform model selection...

, while another is fiducial inference
Fiducial inference
Fiducial inference is one of a number of different types of statistical inference. These are rules, intended for general application, by which conclusions can be drawn from samples of data. In modern statistical practice, attempts to work with fiducial inference have fallen out of fashion in...

.

While "Bayesian inference" is sometimes held to include the approach to inference leading to optimal decision
Optimal decision
An optimal decision is a decision such that no other available decision options will lead to a better outcome. It is an important concept in decision theory. In order to compare the different decision outcomes, one commonly assigns a relative utility to each of them...

s, a more restricted view is taken here for simplicity.

Basis

To a large extent, frequentist inference has been associated with the frequency interpretation of probability
Frequency probability
Frequency probability is the interpretation of probability that defines an event's probability as the limit of its relative frequency in a large number of trials. The development of the frequentist account was motivated by the problems and paradoxes of the previously dominant viewpoint, the...

, specifically that any given experiment can be considered as one of an infinite sequence of possible repetitions of the same experiment, each capable of producing statistically independent results. In this view, the frequentist inference approach to drawing conclusions from data is effectively to require that the correct conclusion should be drawn with a given (high) probability, among this notional set of repetitions. However, exactly the same procedures can be developed under a subtly different formulation. This is one where a pre-experiment point of view is taken. It can be argued that the design of an experiment
Design of experiments
In general usage, design of experiments or experimental design is the design of any information-gathering exercises where variation is present, whether under the full control of the experimenter or not. However, in statistics, these terms are usually used for controlled experiments...

 should include, before undertaking the experiment, decisions about exactly what steps will be taken to reach a conclusion from the data yet to be obtained. These steps can be specified by the scientist so that there is a high probability of reaching a correct decision where, in this case, the probability relates to a yet to occur set of random events and hence does not rely on the frequency interpretation of probability. This formulation has been discussed by Neyman, among others.

Similarly, Bayesian inference
Bayesian inference
In statistics, Bayesian inference is a method of statistical inference. It is often used in science and engineering to determine model parameters, make predictions about unknown variables, and to perform model selection...

 has often been thought of as almost equivalent to the Bayesian interpretation of probability
Bayesian probability
Bayesian probability is one of the different interpretations of the concept of probability and belongs to the category of evidential probabilities. The Bayesian interpretation of probability can be seen as an extension of logic that enables reasoning with propositions, whose truth or falsity is...

 and thus that the essential difference between frequentist inference and Bayesian inference is the same as the difference between the two interpretations of what a "probability" means. However, where appropriate, Bayesian inference (meaning in this case an application of Bayes' theorem
Bayes' theorem
In probability theory and applications, Bayes' theorem relates the conditional probabilities P and P. It is commonly used in science and engineering. The theorem is named for Thomas Bayes ....

) is used by those employing a frequentist interpretation of probabilities
Frequency probability
Frequency probability is the interpretation of probability that defines an event's probability as the limit of its relative frequency in a large number of trials. The development of the frequentist account was motivated by the problems and paradoxes of the previously dominant viewpoint, the...

.

There are two major differences in the frequentist and Bayesian approaches to inference that are not included in the above consideration of the interpretation of probability:
  • In a frequentist approach to inference, unknown parameter
    Parameter
    Parameter from Ancient Greek παρά also “para” meaning “beside, subsidiary” and μέτρον also “metron” meaning “measure”, can be interpreted in mathematics, logic, linguistics, environmental science and other disciplines....

    s are often, but not always, treated as having fixed but unknown values that are not capable of being treated as random variate
    Random variate
    A random variate is a particular outcome of a random variable: the random variates which are other outcomes of the same random variable would have different values. Random variates are used when simulating processes driven by random influences...

    s in any sense, and hence there is no way that probabilities can be associated with them. In contrast, a Bayesian approach to inference does allow probabilities to be associated with unknown parameters, where these probabilities can sometimes have a frequency probability
    Frequency probability
    Frequency probability is the interpretation of probability that defines an event's probability as the limit of its relative frequency in a large number of trials. The development of the frequentist account was motivated by the problems and paradoxes of the previously dominant viewpoint, the...

     interpretation as well as a Bayesian one
    Bayesian probability
    Bayesian probability is one of the different interpretations of the concept of probability and belongs to the category of evidential probabilities. The Bayesian interpretation of probability can be seen as an extension of logic that enables reasoning with propositions, whose truth or falsity is...

    . The Bayesian approach allows these probabilities to have an interpretation as representing the scientist's belief that given values of the parameter are true [see Bayesian probability - Personal probabilities and objective methods for constructing priors].
  • While "probabilities" are involved in both approaches to inference, the probabilities are associated with different types of things. The result of a Bayesian approach can be a probability distribution
    Probability distribution
    In probability theory, a probability mass, probability density, or probability distribution is a function that describes the probability of a random variable taking certain values....

     for what is known about the parameters given the results of the experiment or study. The result of a frequentist approach is either a "true or false" conclusion from a significance test or a conclusion in the form that a given sample-derived confidence interval
    Confidence interval
    In statistics, a confidence interval is a particular kind of interval estimate of a population parameter and is used to indicate the reliability of an estimate. It is an observed interval , in principle different from sample to sample, that frequently includes the parameter of interest, if the...

     covers the true value: either of these conclusions has a given probability of being correct, where this probability has either a frequency probability
    Frequency probability
    Frequency probability is the interpretation of probability that defines an event's probability as the limit of its relative frequency in a large number of trials. The development of the frequentist account was motivated by the problems and paradoxes of the previously dominant viewpoint, the...

    interpretation or a pre-experiment interpretation.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK