Large cardinal property
Encyclopedia
In the mathematical field of set theory
Set theory
Set theory is the branch of mathematics that studies sets, which are collections of objects. Although any type of object can be collected into a set, set theory is applied most often to objects that are relevant to mathematics...

, a large cardinal property is a certain kind of property of transfinite cardinal number
Cardinal number
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality of sets. The cardinality of a finite set is a natural number – the number of elements in the set. The transfinite cardinal numbers describe the sizes of infinite...

s. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than , bigger than the cardinality of the continuum
Cardinality of the continuum
In set theory, the cardinality of the continuum is the cardinality or “size” of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by |\mathbb R| or \mathfrak c ....

, etc.). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott
Dana Scott
Dana Stewart Scott is the emeritus Hillman University Professor of Computer Science, Philosophy, and Mathematical Logic at Carnegie Mellon University; he is now retired and lives in Berkeley, California...

's phrase, as quantifying the fact "that if you want more you have to assume more".

There is a rough convention that results provable from ZFC alone may be stated without hypotheses, but that if the proof requires other assumptions (such as the existence of large cardinals), these should be stated. Whether this is simply a linguistic convention, or something more, is a controversial point among distinct philosophical schools (see Motivations and epistemic status below).

A large cardinal axiom is an axiom stating that there exists a cardinal (or perhaps many of them) with some specified large cardinal property.

There is no generally agreed precise definition of what a large cardinal property is, though essentially everyone agrees that those listed at List of large cardinal properties are large cardinal properties.

Partial definition

A necessary condition for a property of cardinal numbers to be a large cardinal property is that the existence of such a cardinal is not known to be inconsistent with ZFC and it has been proven that if ZFC is consistent, then ZFC + "no such cardinal exists" is consistent.

Hierarchy of consistency strength

A remarkable observation about large cardinal axioms is that they appear to occur in strict linear order by consistency strength. That is, no exception is known to the following: Given two large cardinal axioms A1 and A2, one of three (mutually exclusive) things happens:
  1. ZFC proves "ZFC+A1 is consistent if and only if ZFC+A2 is consistent,"
  2. ZFC+A1 proves that ZFC+A2 is consistent,
  3. ZFC+A2 proves that ZFC+A1 is consistent.


In case 1 we say that A1 and A2 are equiconsistent
Equiconsistency
In mathematical logic, two theories are equiconsistent if, roughly speaking, they are "as consistent as each other".It is not in general possible to prove the absolute consistency of a theory T...

. In case 2, we say that A1 is consistency-wise stronger than A2 (vice versa for case 3). If A2 is stronger than A1, then ZFC+A1 cannot prove A2 is consistent, even with the additional hypothesis that ZFC+A1 is itself consistent (provided of course that it really is). This follows from Gödel's second incompleteness theorem.

The observation that large cardinal axioms are linearly ordered by consistency strength is just that, an observation, not a theorem. (Without an accepted definition of large cardinal property, it is not subject to proof in the ordinary sense). Also, it is not known in every case which of the three cases holds. Saharon Shelah
Saharon Shelah
Saharon Shelah is an Israeli mathematician. He is a professor of mathematics at the Hebrew University of Jerusalem and Rutgers University in New Jersey.-Biography:...

 has asked, "[i]s there some theorem explaining this, or is our vision just more uniform than we realize?" Woodin
W. Hugh Woodin
William Hugh Woodin is an American mathematician and set theorist at University of California, Berkeley. He has made many notable contributions to the theory of inner models and determinacy. A type of large cardinal, the Woodin cardinal, bears his name.-Biography:Born in Tucson, Arizona, Woodin...

, however, deduces this from the Ω-conjecture, the main unsolved problem of his Ω-logic.

It should also be noted that the order of consistency strength is not necessarily the same as the order of the size of the smallest witness to a large cardinal axiom. For example, the existence of a huge cardinal is much stronger, in terms of consistency strength, than the existence of a supercompact cardinal, but assuming both exist, the first huge is smaller than the first supercompact.

Motivations and epistemic status

Large cardinals are understood in the context of the von Neumann universe
Von Neumann universe
In set theory and related branches of mathematics, the von Neumann universe, or von Neumann hierarchy of sets, denoted V, is the class of hereditary well-founded sets...

 V, which is built up by transfinitely iterating
Transfinite induction
Transfinite induction is an extension of mathematical induction to well-ordered sets, for instance to sets of ordinal numbers or cardinal numbers.- Transfinite induction :Let P be a property defined for all ordinals α...

 the powerset operation, which collects together all subset
Subset
In mathematics, especially in set theory, a set A is a subset of a set B if A is "contained" inside B. A and B may coincide. The relationship of one set being a subset of another is called inclusion or sometimes containment...

s of a given set. Typically, models in which large cardinal axioms fail can be seen in some natural way as submodels of those in which the axioms hold. For example, if there is an inaccessible cardinal
Inaccessible cardinal
In set theory, an uncountable regular cardinal number is called weakly inaccessible if it is a weak limit cardinal, and strongly inaccessible, or just inaccessible, if it is a strong limit cardinal. Some authors do not require weakly and strongly inaccessible cardinals to be uncountable...

, then "cutting the universe off" at the height of the first such cardinal yields a universe
Universe (mathematics)
In mathematics, and particularly in set theory and the foundations of mathematics, a universe is a class that contains all the entities one wishes to consider in a given situation...

 in which there is no inaccessible cardinal. Or if there is a measurable cardinal
Measurable cardinal
- Measurable :Formally, a measurable cardinal is an uncountable cardinal number κ such that there exists a κ-additive, non-trivial, 0-1-valued measure on the power set of κ...

, then iterating the definable powerset operation rather than the full one yields Gödel's constructible universe, L, which does not satisfy the statement "there is a measurable cardinal" (even though it contains the measurable cardinal as an ordinal).

Thus, from a certain point of view held by many set theorists (especially those inspired by the tradition of the Cabal
Cabal (set theory)
The Cabal was, or perhaps is, a grouping of set theorists in Southern California, particularly at UCLA and Caltech, but also at UC Irvine. Organization and procedures range from informal to nonexistent, so it is difficult to say whether it still exists or exactly who has been a member, but it has...

), large cardinal axioms "say" that we are considering all the sets we're "supposed" to be considering, whereas their negations are "restrictive" and say that we're considering only some of those sets. Moreover the consequences of large cardinal axioms seem to fall into natural patterns (see Maddy, "Believing the Axioms, II"). For these reasons, such set theorists tend to consider large cardinal axioms to have a preferred status among extensions of ZFC, one not shared by axioms of less clear motivation (such as Martin's axiom
Martin's axiom
In the mathematical field of set theory, Martin's axiom, introduced by , is a statement which is independent of the usual axioms of ZFC set theory. It is implied by the continuum hypothesis, so certainly consistent with ZFC, but is also known to be consistent with ZF + ¬ CH...

) or others that they consider intuitively unlikely (such as V = L). The hardcore realists in this group would state, more simply, that large cardinal axioms are true.

This point of view is by no means universal among set theorists. Some formalists would assert that standard set theory is by definition the study of the consequences of ZFC, and while they might not be opposed in principle to studying the consequences of other systems, they see no reason to single out large cardinals as preferred. There are also realists who deny that ontological maximalism
Ontological maximalism
In philosophy, ontological maximalism is a preference for largest possible universe, i.e. anything which could exist does exist.- See also :*Ontology*Maximalism*Large cardinal property*Continuum hypothesis...

 is a proper motivation, and even believe that large cardinal axioms are false. And finally, there are some who deny that the negations of large cardinal axioms are restrictive, pointing out that (for example) there can be a transitive
Transitive set
In set theory, a set A is transitive, if* whenever x ∈ A, and y ∈ x, then y ∈ A, or, equivalently,* whenever x ∈ A, and x is not an urelement, then x is a subset of A....

set model in L that believes there exists a measurable cardinal, even though L itself does not satisfy that proposition.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK