Size homotopy group
Encyclopedia
The concept of size homotopy group is analogous in size theory of the classical concept of homotopy group
Homotopy group
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space...

. In order to give its definition, let us assume that a size pair  is given, where is a closed manifold
Closed manifold
In mathematics, a closed manifold is a type of topological space, namely a compact manifold without boundary. In contexts where no boundary is possible, any compact manifold is a closed manifold....

 of class and is a continuous function
Continuous function
In mathematics, a continuous function is a function for which, intuitively, "small" changes in the input result in "small" changes in the output. Otherwise, a function is said to be "discontinuous". A continuous function with a continuous inverse function is called "bicontinuous".Continuity of...

. Let us consider the partial order  in defined by setting if and only if . For every we set .

Assume that and . If , are two paths from to and a homotopy
Homotopy
In topology, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions...

 from to , based at , exists in the topological space
Topological space
Topological spaces are mathematical structures that allow the formal definition of concepts such as convergence, connectedness, and continuity. They appear in virtually every branch of modern mathematics and are a central unifying notion...

 , then we write . The first size homotopy group of the size pair  computed at is defined to be the quotient set of the set of all path
Path
Path, pathway or PATH may refer to:-Path:* Course , the intended path of a vehicle over the surface of the Earth* Trail, hiking trail, footpath, or bridle path...

s from to in with respect to the equivalence relation
Equivalence relation
In mathematics, an equivalence relation is a relation that, loosely speaking, partitions a set so that every element of the set is a member of one and only one cell of the partition. Two elements of the set are considered equivalent if and only if they are elements of the same cell...

 , endowed with the operation induced by the usual composition of based loop
Loop
- Technology :*Loop , sending a signal on a channel and receiving it back at the sending terminal*Loop , a method of control flow in computer science*Loop device, a Unix device node that allows a file to be mounted on a directory...

s .

In other words, the first size homotopy group of the size pair  computed at and is the image

of the first homotopy group
Homotopy group
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space...

  with base point of the topological space
Topological space
Topological spaces are mathematical structures that allow the formal definition of concepts such as convergence, connectedness, and continuity. They appear in virtually every branch of modern mathematics and are a central unifying notion...

 , when is the homomorphism
Homomorphism
In abstract algebra, a homomorphism is a structure-preserving map between two algebraic structures . The word homomorphism comes from the Greek language: ὁμός meaning "same" and μορφή meaning "shape".- Definition :The definition of homomorphism depends on the type of algebraic structure under...

 induced by the inclusion of in .

The -th size homotopy group is obtained by substituting the loop
Loop
- Technology :*Loop , sending a signal on a channel and receiving it back at the sending terminal*Loop , a method of control flow in computer science*Loop device, a Unix device node that allows a file to be mounted on a directory...

s based at with the continuous function
Continuous function
In mathematics, a continuous function is a function for which, intuitively, "small" changes in the input result in "small" changes in the output. Otherwise, a function is said to be "discontinuous". A continuous function with a continuous inverse function is called "bicontinuous".Continuity of...

s taking a fixed point of to , as happens when higher homotopy group
Homotopy group
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space...

s are defined.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK