Fanno flow
Encyclopedia
Fanno flow refers to adiabatic
flow through a constant area duct where the effect of friction
is considered. Compressibility
effects often come into consideration, although the Fanno flow model certainly also applies to incompressible flow
. For this model, the duct area remains constant, the flow is assumed to be steady and one-dimensional, and no mass is added within the duct. The Fanno flow model is considered an irreversible process due to viscous effects. The viscous friction causes the flow properties to change along the duct. The frictional effect is modeled as a shear stress at the wall acting on the fluid with uniform properties over any cross section of the duct.
For a flow with an upstream Mach number
greater than 1.0 in a sufficiently long enough duct, deceleration occurs and the flow can become choked
. On the other hand, for a flow with an upstream Mach number less than 1.0, acceleration occurs and the flow can become choked in a sufficiently long duct. It can be shown that for flow of calorically perfect gas the maximum entropy
occurs at M
= 1.0. Fanno flow is named after Gino Girolamo Fanno.
that relates the change in Mach number with respect to the length of the duct, dM/dx. Other terms in the differential equation are the heat capacity ratio
, γ, the Fanning friction factor, f, and the hydraulic diameter, Dh:
Assuming the Fanning friction factor is a constant along the duct wall, the differential equation can be solved easily. One must keep in mind, however, that the value of the Fanning friction factor can be difficult to determine for supersonic
and especially hypersonic
flow velocities. The resulting relation is shown below where L* is the required duct length to choke the flow assuming the upstream Mach number is supersonic. The left-hand side is often called the Fanno parameter.
Equally important to the Fanno flow model is the dimensionless ratio of the change in entropy over the heat capacity at constant pressure, cp.
The above equation can be rewritten in terms of a static to stagnation temperature ratio, which, for a calorically perfect gas, is equal to the dimensionless enthalpy ratio, H:
The equation above can be used to plot the Fanno line, which represents a locus of states for given Fanno flow conditions on an H-ΔS diagram. In the diagram, the Fanno line reaches maximum entropy at H = 0.833 and the flow is choked. According to the Second law of thermodynamics
, entropy must always increase for Fanno flow. This means that a subsonic flow entering a duct with friction will have an increase in its Mach number until the flow is choked. Conversely, the Mach number of a supersonic flow will decrease until the flow is choked. Each point on the Fanno line corresponds with a different Mach number, and the movement to choked flow is shown in the diagram.
The Fanno line defines the possible states for a gas when the mass flow rate and total enthalpy are held constant, but the momentum varies. Each point on the Fanno line will have a different momentum value, and the change in momentum is attributable to the effects of friction.
remains constant. These relations are shown below with the * symbol representing the throat location where choking can occur. A stagnation property contains a 0 subscript.
Differential equations can also be developed and solved to describe Fanno flow property ratios with respect to the values at the choking location. The ratios for the pressure, density, temperature, velocity and stagnation pressure are shown below, respectively. They are represented graphically along with the Fanno parameter.
The Fanno flow model is also used extensively with the Rayleigh flow
model. These two models intersect at points on the enthalpy-entropy and Mach number-entropy diagrams, which is meaningful for many applications. However, the entropy values for each model are not equal at the sonic state. The change in entropy is 0 at M = 1 for each model, but the previous statement means the change in entropy from the same arbitrary point to the sonic point is different for the Fanno and Rayleigh flow models. If initial values of si and Mi are defined, a new equation for dimensionless entropy versus Mach number can be defined for each model. These equations are shown below for Fanno and Rayleigh flow, respectively.
Figure 5 shows the Fanno and Rayleigh lines intersecting with each other for initial conditions of si = 0 and Mi = 3. The intersection points are calculated by equating the new dimensionless entropy equations with each other, resulting in the relation below.
Interestingly, the intersection points occur at the given initial Mach number and its post-normal shock value. For Figure 5, these values are M = 3 and 0.4752, which can be found the normal shock tables listed in most compressible flow textbooks. A given flow with a constant duct area can switch between the Fanno and Rayleigh models at these points.
Adiabatic process
In thermodynamics, an adiabatic process or an isocaloric process is a thermodynamic process in which the net heat transfer to or from the working fluid is zero. Such a process can occur if the container of the system has thermally-insulated walls or the process happens in an extremely short time,...
flow through a constant area duct where the effect of friction
Friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and/or material elements sliding against each other. There are several types of friction:...
is considered. Compressibility
Compressible flow
Compressible flow is the area of fluid mechanics that deals with fluids in which the fluid density varies significantly in response to a change in pressure. Compressibility effects are typically considered significant if the Mach number of the flow exceeds 0.3, or if the fluid undergoes very large...
effects often come into consideration, although the Fanno flow model certainly also applies to incompressible flow
Incompressible flow
In fluid mechanics or more generally continuum mechanics, incompressible flow refers to flow in which the material density is constant within an infinitesimal volume that moves with the velocity of the fluid...
. For this model, the duct area remains constant, the flow is assumed to be steady and one-dimensional, and no mass is added within the duct. The Fanno flow model is considered an irreversible process due to viscous effects. The viscous friction causes the flow properties to change along the duct. The frictional effect is modeled as a shear stress at the wall acting on the fluid with uniform properties over any cross section of the duct.
For a flow with an upstream Mach number
Mach number
Mach number is the speed of an object moving through air, or any other fluid substance, divided by the speed of sound as it is in that substance for its particular physical conditions, including those of temperature and pressure...
greater than 1.0 in a sufficiently long enough duct, deceleration occurs and the flow can become choked
Choked flow
Choked flow is a compressible flow effect. The parameter that becomes "choked" or "limited" is the velocity or the mass flow rate.Choked flow is a fluid dynamic condition associated with the Venturi effect...
. On the other hand, for a flow with an upstream Mach number less than 1.0, acceleration occurs and the flow can become choked in a sufficiently long duct. It can be shown that for flow of calorically perfect gas the maximum entropy
Entropy
Entropy is a thermodynamic property that can be used to determine the energy available for useful work in a thermodynamic process, such as in energy conversion devices, engines, or machines. Such devices can only be driven by convertible energy, and have a theoretical maximum efficiency when...
occurs at M
Mach number
Mach number is the speed of an object moving through air, or any other fluid substance, divided by the speed of sound as it is in that substance for its particular physical conditions, including those of temperature and pressure...
= 1.0. Fanno flow is named after Gino Girolamo Fanno.
Theory
The Fanno flow model begins with a differential equationDifferential equation
A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders...
that relates the change in Mach number with respect to the length of the duct, dM/dx. Other terms in the differential equation are the heat capacity ratio
Heat capacity ratio
The heat capacity ratio or adiabatic index or ratio of specific heats, is the ratio of the heat capacity at constant pressure to heat capacity at constant volume . It is sometimes also known as the isentropic expansion factor and is denoted by \gamma or \kappa . The latter symbol kappa is...
, γ, the Fanning friction factor, f, and the hydraulic diameter, Dh:
Assuming the Fanning friction factor is a constant along the duct wall, the differential equation can be solved easily. One must keep in mind, however, that the value of the Fanning friction factor can be difficult to determine for supersonic
Supersonic
Supersonic speed is a rate of travel of an object that exceeds the speed of sound . For objects traveling in dry air of a temperature of 20 °C this speed is approximately 343 m/s, 1,125 ft/s, 768 mph or 1,235 km/h. Speeds greater than five times the speed of sound are often...
and especially hypersonic
Hypersonic
In aerodynamics, a hypersonic speed is one that is highly supersonic. Since the 1970s, the term has generally been assumed to refer to speeds of Mach 5 and above...
flow velocities. The resulting relation is shown below where L* is the required duct length to choke the flow assuming the upstream Mach number is supersonic. The left-hand side is often called the Fanno parameter.
Equally important to the Fanno flow model is the dimensionless ratio of the change in entropy over the heat capacity at constant pressure, cp.
The above equation can be rewritten in terms of a static to stagnation temperature ratio, which, for a calorically perfect gas, is equal to the dimensionless enthalpy ratio, H:
The equation above can be used to plot the Fanno line, which represents a locus of states for given Fanno flow conditions on an H-ΔS diagram. In the diagram, the Fanno line reaches maximum entropy at H = 0.833 and the flow is choked. According to the Second law of thermodynamics
Second law of thermodynamics
The second law of thermodynamics is an expression of the tendency that over time, differences in temperature, pressure, and chemical potential equilibrate in an isolated physical system. From the state of thermodynamic equilibrium, the law deduced the principle of the increase of entropy and...
, entropy must always increase for Fanno flow. This means that a subsonic flow entering a duct with friction will have an increase in its Mach number until the flow is choked. Conversely, the Mach number of a supersonic flow will decrease until the flow is choked. Each point on the Fanno line corresponds with a different Mach number, and the movement to choked flow is shown in the diagram.
The Fanno line defines the possible states for a gas when the mass flow rate and total enthalpy are held constant, but the momentum varies. Each point on the Fanno line will have a different momentum value, and the change in momentum is attributable to the effects of friction.
Additional Fanno flow relations
As was stated earlier, the area and mass flow rate in the duct are held constant for Fanno flow. Additionally, the stagnation temperatureStagnation temperature
In thermodynamics and fluid mechanics, stagnation temperature is the temperature at a stagnation point in a fluid flow. At a stagnation point the speed of the fluid is zero and all of the kinetic energy has been converted to internal energy and is added to the local static enthalpy...
remains constant. These relations are shown below with the * symbol representing the throat location where choking can occur. A stagnation property contains a 0 subscript.
Differential equations can also be developed and solved to describe Fanno flow property ratios with respect to the values at the choking location. The ratios for the pressure, density, temperature, velocity and stagnation pressure are shown below, respectively. They are represented graphically along with the Fanno parameter.
Applications
The Fanno flow model is often used in the design and analysis of nozzles. In a nozzle, the converging or diverging area is modeled with isentropic flow, while the constant area section afterwards is modeled with Fanno flow. For given upstream conditions at point 1 as shown in Figures 3 and 4, calculations can be made to determine the nozzle exit Mach number and the location of a normal shock in the constant area duct. Point 2 labels the nozzle throat, where M = 1 if the flow is choked. Point 3 labels the end of the nozzle where the flow transitions from isentropic to Fanno. With a high enough initial pressure, supersonic flow can be maintained through the constant area duct, similar to the desired performance of a blowdown-type supersonic wind tunnel. However, these figures show the shock wave before it has moved entirely through the duct. If a shock wave is present, the flow transitions from the supersonic portion of the Fanno line to the subsonic portion before continuing towards M = 1. The movement in Figure 4 is always from the left to the right in order to satisfy the second law of thermodynamics.The Fanno flow model is also used extensively with the Rayleigh flow
Rayleigh flow
Rayleigh flow refers to diabatic flow through a constant area duct where the effect of heat addition or rejection is considered. Compressibility effects often come into consideration, although the Rayleigh flow model certainly also applies to incompressible flow. For this model, the duct area...
model. These two models intersect at points on the enthalpy-entropy and Mach number-entropy diagrams, which is meaningful for many applications. However, the entropy values for each model are not equal at the sonic state. The change in entropy is 0 at M = 1 for each model, but the previous statement means the change in entropy from the same arbitrary point to the sonic point is different for the Fanno and Rayleigh flow models. If initial values of si and Mi are defined, a new equation for dimensionless entropy versus Mach number can be defined for each model. These equations are shown below for Fanno and Rayleigh flow, respectively.
Figure 5 shows the Fanno and Rayleigh lines intersecting with each other for initial conditions of si = 0 and Mi = 3. The intersection points are calculated by equating the new dimensionless entropy equations with each other, resulting in the relation below.
Interestingly, the intersection points occur at the given initial Mach number and its post-normal shock value. For Figure 5, these values are M = 3 and 0.4752, which can be found the normal shock tables listed in most compressible flow textbooks. A given flow with a constant duct area can switch between the Fanno and Rayleigh models at these points.
See also
- Rayleigh flowRayleigh flowRayleigh flow refers to diabatic flow through a constant area duct where the effect of heat addition or rejection is considered. Compressibility effects often come into consideration, although the Rayleigh flow model certainly also applies to incompressible flow. For this model, the duct area...
- Isentropic processIsentropic processIn thermodynamics, an isentropic process or isoentropic process is one in which for purposes of engineering analysis and calculation, one may assume that the process takes place from initiation to completion without an increase or decrease in the entropy of the system, i.e., the entropy of the...
- Isothermal flowIsothermal flowIsothermal flow is a model of compressible fluid flow whereby the flow remains at the same temperature while flowing in a conduit. In the model, heat transferred through the walls of the conduit is offset by frictional heating back into the flow. Although the flow temperature remains constant, a...
- Gas dynamicsGas dynamicsGas dynamics is a branch of fluid dynamics concerned with studying the motion of gases and its consequent effects. Gas dynamics combines the principles of fluid mechanics and thermodynamics...
- Compressible flowCompressible flowCompressible flow is the area of fluid mechanics that deals with fluids in which the fluid density varies significantly in response to a change in pressure. Compressibility effects are typically considered significant if the Mach number of the flow exceeds 0.3, or if the fluid undergoes very large...
- Choked flowChoked flowChoked flow is a compressible flow effect. The parameter that becomes "choked" or "limited" is the velocity or the mass flow rate.Choked flow is a fluid dynamic condition associated with the Venturi effect...
- EnthalpyEnthalpyEnthalpy is a measure of the total energy of a thermodynamic system. It includes the internal energy, which is the energy required to create a system, and the amount of energy required to make room for it by displacing its environment and establishing its volume and pressure.Enthalpy is a...
- EntropyEntropyEntropy is a thermodynamic property that can be used to determine the energy available for useful work in a thermodynamic process, such as in energy conversion devices, engines, or machines. Such devices can only be driven by convertible energy, and have a theoretical maximum efficiency when...