Prym variety
Encyclopedia
In mathematics
Mathematics
Mathematics is the study of quantity, space, structure, and change. Mathematicians seek out patterns and formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity...

, the Prym variety (named for Friedrich Prym) construction is a method in algebraic geometry
Algebraic geometry
Algebraic geometry is a branch of mathematics which combines techniques of abstract algebra, especially commutative algebra, with the language and the problems of geometry. It occupies a central place in modern mathematics and has multiple conceptual connections with such diverse fields as complex...

 of making an abelian variety
Abelian variety
In mathematics, particularly in algebraic geometry, complex analysis and number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions...

 from a morphism of algebraic curve
Algebraic curve
In algebraic geometry, an algebraic curve is an algebraic variety of dimension one. The theory of these curves in general was quite fully developed in the nineteenth century, after many particular examples had been considered, starting with circles and other conic sections.- Plane algebraic curves...

s. In its original form, it was applied to an unramified double covering of a Riemann surface
Riemann surface
In mathematics, particularly in complex analysis, a Riemann surface, first studied by and named after Bernhard Riemann, is a one-dimensional complex manifold. Riemann surfaces can be thought of as "deformed versions" of the complex plane: locally near every point they look like patches of the...

, and was used by W. Schottky and H. W. E. Jung in relation with the Schottky problem
Schottky problem
In mathematics, the Schottky problem, named after Friedrich Schottky, is a classical question of algebraic geometry, asking for a characterisation of Jacobian varieties amongst abelian varieties.-Geometric formulation:...

, as it now called, of characterising Jacobian varieties among abelian varieties. It is said to have appeared first in the late work of Riemann, and was extensively studied by Wirtinger in 1895, including degenerate cases.

Given a non-constant morphism
φ: C1C2


of algebraic curves, write Ji for the Jacobian variety of Ci. Then from φ construct the corresponding morphism
ψ: J1J2,


which can be defined on a divisor class D of degree zero by applying φ to each point of the divisor. This is a well-defined morphism, often called the norm homomorphism. Then the Prym variety of φ is the kernel
Kernel (algebra)
In the various branches of mathematics that fall under the heading of abstract algebra, the kernel of a homomorphism measures the degree to which the homomorphism fails to be injective. An important special case is the kernel of a matrix, also called the null space.The definition of kernel takes...

 of ψ. To qualify that somewhat, to get an abelian variety, the connected component of the identity of the reduced scheme underlying the kernel may be intended. Or in other words take the largest abelian subvariety of J1, on which ψ is trivial.

The theory of Prym varieties was dormant for a long time, until revived by David Mumford
David Mumford
David Bryant Mumford is an American mathematician known for distinguished work in algebraic geometry, and then for research into vision and pattern theory. He won the Fields Medal and was a MacArthur Fellow. In 2010 he was awarded the National Medal of Science...

 around 1970. It now plays a substantial role in some contemporary theories, for example of the Kadomtsev–Petviashvili equation. One advantage of the method is that it allows one to apply the theory of curves to the study of a wider class of abelian varieties than Jacobians. E.g. (principally polarized) abelian varieties of dimension > 3 are not generally Jacobians, but all p.p.a.v.'s of dimension 5 or less are Prym varieties. It is for this reason that p.p.a.v.'s are fairly well understood up to dimension 5.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK