Forgetful functor
Encyclopedia
In mathematics
Mathematics
Mathematics is the study of quantity, space, structure, and change. Mathematicians seek out patterns and formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity...

, in the area of category theory
Category theory
Category theory is an area of study in mathematics that examines in an abstract way the properties of particular mathematical concepts, by formalising them as collections of objects and arrows , where these collections satisfy certain basic conditions...

, a forgetful functor (also known as a stripping functor) is a type of functor
Functor
In category theory, a branch of mathematics, a functor is a special type of mapping between categories. Functors can be thought of as homomorphisms between categories, or morphisms when in the category of small categories....

. The nomenclature is suggestive of such a functor's behaviour: given some object with structure as input, some or all of the object's structure or properties is 'forgotten' in the output. For an algebraic
Algebraic structure
In abstract algebra, an algebraic structure consists of one or more sets, called underlying sets or carriers or sorts, closed under one or more operations, satisfying some axioms. Abstract algebra is primarily the study of algebraic structures and their properties...

 structure
Structure (mathematical logic)
In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations which are defined on it....

 of a given signature
Signature (logic)
In logic, especially mathematical logic, a signature lists and describes the non-logical symbols of a formal language. In universal algebra, a signature lists the operations that characterize an algebraic structure. In model theory, signatures are used for both purposes.Signatures play the same...

, this may be expressed by curtailing the signature in some way: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure; this is in fact the most common case.

For example, there are several forgetful functors from the category of commutative rings. A (unital) ring
Ring (mathematics)
In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition and a semigroup under multiplication such that multiplication distributes over addition...

, described in the language of universal algebra
Universal algebra
Universal algebra is the field of mathematics that studies algebraic structures themselves, not examples of algebraic structures....

, is an ordered tuple (R,+,*,a,0,1) satisfying certain axioms, where "+" and "*" are binary functions on the set R, a is a unary operation corresponding to additive inverse, and 0 and 1 are nullary operations giving the identities of the two binary operations. Deleting the 1 gives a forgetful functor to the category of rings without unit; it simply "forgets" the unit. Deleting "*" and 1 yields a functor to the category of abelian group
Abelian group
In abstract algebra, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on their order . Abelian groups generalize the arithmetic of addition of integers...

s, which assigns to each ring R the underlying additive abelian group of R. To each morphism
Morphism
In mathematics, a morphism is an abstraction derived from structure-preserving mappings between two mathematical structures. The notion of morphism recurs in much of contemporary mathematics...

 of rings is assigned the same function
Function (mathematics)
In mathematics, a function associates one quantity, the argument of the function, also known as the input, with another quantity, the value of the function, also known as the output. A function assigns exactly one output to each input. The argument and the value may be real numbers, but they can...

 considered merely as a morphism of addition between the underlying groups. Deleting all the operations gives the functor to the underlying set R.

It is beneficial to distinguish between forgetful functors that "forget structure" versus those that "forget properties". For example, in the above example of commutative rings, in addition to those functors that delete some of the operations, there are functors that forget some of the axioms. There is a functor from the category CRing to Ring that forgets the axiom of commutativity, but keeps all the operations. Occasionally the object may include extra sets not defined strictly in terms of the underlying set (in this case, which part to consider the underlying set is a matter of taste, though this is rarely ambiguous in practice). For these objects, there are forgetful functors that forget the extra sets that are more general.

Most common objects studied in mathematics are constructed as underlying sets along with extra sets of structure on those sets (operations on the underlying set, privileged subsets of the underlying set, etc.) which may satisfy some axioms. For these objects, a commonly considered forgetful functor is as follows.
Let be any category based on sets, e.g. group
Group (mathematics)
In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines any two of its elements to form a third element. To qualify as a group, the set and the operation must satisfy a few conditions called group axioms, namely closure, associativity, identity...

s - sets of elements - or topological space
Topological space
Topological spaces are mathematical structures that allow the formal definition of concepts such as convergence, connectedness, and continuity. They appear in virtually every branch of modern mathematics and are a central unifying notion...

s - sets of 'points'. As usual, write for the objects of and write for the morphisms of the same. Consider the rule: in the underlying set of in the morphism, , as a map of sets.
The functor is then the forgetful functor from to , the category of sets
Category of sets
In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets A and B are all functions from A to B...

.

Forgetful functors are almost always faithful. Concrete categories
Concrete category
In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets. This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions...

 have forgetful functors to the category of sets—indeed they may be defined as those categories that admit a faithful functor to that category.

Forgetful functors that only forget axioms are always fully faithful; every morphism that respects the structure between objects that satisfy the axioms automatically also respects the axioms. Forgetful functors that forget structures need not be full; some morphisms don't respect the structure. These functors are still faithful though; distinct morphisms that do respect the structure are still distinct when the structure is forgotten. Functors that forget the extra sets need not be faithful; distinct morphisms respecting the structure of those extra sets may be indistinguishable on the underlying set.

In the language of formal logic, a functor of the first kind removes axioms. The second kind removes predicates. The third kind remove types.

An example of the first kind is the forgetful functor AbGrp. One of the second kind is the forgetful functor AbSet. A functor of the third kind is the functor ModAb, where Mod is the fibred category
Fibred category
Fibred categories are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images of objects such as vector bundles can be defined...

 of all modules over arbitrary rings. To see this, just choose a ring homomorphism between the underlying rings that does not change the ring action. Under the forgetful functor, this morphism yields the identity. Note that an object in Mod is a tuple, which includes a ring and an abelian group, so which to forget is a matter of taste.

Left Adjoint: Free

Forgetful functors tend to have left adjoints, which are 'free
Free object
In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. It is a part of universal algebra, in the sense that it relates to all types of algebraic structure . It also has a formulation in terms of category theory, although this is in yet more abstract terms....

' constructions. For example:
  • free module
    Free module
    In mathematics, a free module is a free object in a category of modules. Given a set S, a free module on S is a free module with basis S.Every vector space is free, and the free vector space on a set is a special case of a free module on a set.-Definition:...

    : the forgetful functor from (the category of -module
    Module (mathematics)
    In abstract algebra, the concept of a module over a ring is a generalization of the notion of vector space, wherein the corresponding scalars are allowed to lie in an arbitrary ring...

    ) to has left adjoint , with , the free -module with basis
    Basis
    Basis may refer to* Cost basis, in income tax law, the original cost of property adjusted for factors such as depreciation.* Basis of futures, the value differential between a future and the spot price...

     .
  • free group
    Free group
    In mathematics, a group G is called free if there is a subset S of G such that any element of G can be written in one and only one way as a product of finitely many elements of S and their inverses...

  • free lattice
    Free lattice
    In mathematics, in the area of order theory, a free lattice is the free object corresponding to a lattice. As free objects, they have the universal property. The word problem for free lattices is also challenging.-Formal definition:...

  • tensor algebra
    Tensor algebra
    In mathematics, the tensor algebra of a vector space V, denoted T or T•, is the algebra of tensors on V with multiplication being the tensor product...



For a more extensive list, see (Mac Lane 1997).

As this is a fundamental example of adjoints, we spell it out:
adjointness means that given a set X and an object (say, an R-module) M, maps of sets correspond to maps of modules : every map of sets yields a map of modules, and every map of modules comes from a map of sets.

In the case of vector spaces, this is summarized as:
"A map between vector spaces is determined by where it sends a basis, and a basis can be mapped to anything."

Symbolically:

The counit of the free-forget adjunction is the "inclusion of a basis": .

Fld, the category of fields, furnishes an example of a forgetful functor with no adjoint. There is no field satisfying a free universal property for a given set.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK