Subcoloring
Encyclopedia
In graph theory
, a subcoloring is an assignment of color
s to a graph
's vertices
such that each color class induces a vertex disjoint union of cliques
.
A subchromatic number χS(G) of a graph G is the least number of colors needed in any subcoloring of G.
Subcoloring and subchromatic number were introduced by .
Every proper coloring
and cocoloring
of a graph are also subcolorings, so the subchromatic number of any graph is at most equal to the cochromatic number, which is at most equal to the chromatic number.
Subcoloring is as difficult to solve exactly as coloring, in the sense that (like coloring) it is NP-complete
. More specifically,
the problem of determining whether a triangle-free
planar graph
with maximum degree
4 has subchromatic number at most 2 is NP-complete .
Graph theory
In mathematics and computer science, graph theory is the study of graphs, mathematical structures used to model pairwise relations between objects from a certain collection. A "graph" in this context refers to a collection of vertices or 'nodes' and a collection of edges that connect pairs of...
, a subcoloring is an assignment of color
Color
Color or colour is the visual perceptual property corresponding in humans to the categories called red, green, blue and others. Color derives from the spectrum of light interacting in the eye with the spectral sensitivities of the light receptors...
s to a graph
Graph (mathematics)
In mathematics, a graph is an abstract representation of a set of objects where some pairs of the objects are connected by links. The interconnected objects are represented by mathematical abstractions called vertices, and the links that connect some pairs of vertices are called edges...
's vertices
Vertex (graph theory)
In graph theory, a vertex or node is the fundamental unit out of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges , while a directed graph consists of a set of vertices and a set of arcs...
such that each color class induces a vertex disjoint union of cliques
Clique (graph theory)
In the mathematical area of graph theory, a clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs...
.
A subchromatic number χS(G) of a graph G is the least number of colors needed in any subcoloring of G.
Subcoloring and subchromatic number were introduced by .
Every proper coloring
Graph coloring
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices share the...
and cocoloring
Cocoloring
In graph theory, a cocoloring of a graph G is an assignment of colors to the vertices such that each color class forms an independent set in G or in the complement of G. The cochromatic number z of G is the least number of colors needed in any cocolorings of G...
of a graph are also subcolorings, so the subchromatic number of any graph is at most equal to the cochromatic number, which is at most equal to the chromatic number.
Subcoloring is as difficult to solve exactly as coloring, in the sense that (like coloring) it is NP-complete
NP-complete
In computational complexity theory, the complexity class NP-complete is a class of decision problems. A decision problem L is NP-complete if it is in the set of NP problems so that any given solution to the decision problem can be verified in polynomial time, and also in the set of NP-hard...
. More specifically,
the problem of determining whether a triangle-free
Triangle-free graph
In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally...
planar graph
Planar graph
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints...
with maximum degree
Degree (graph theory)
In graph theory, the degree of a vertex of a graph is the number of edges incident to the vertex, with loops counted twice. The degree of a vertex v is denoted \deg. The maximum degree of a graph G, denoted by Δ, and the minimum degree of a graph, denoted by δ, are the maximum and minimum degree...
4 has subchromatic number at most 2 is NP-complete .