Superlens
Encyclopedia
A superlens, super lens or perfect lens is a lens
Lens (optics)
A lens is an optical device with perfect or approximate axial symmetry which transmits and refracts light, converging or diverging the beam. A simple lens consists of a single optical element...

 which uses metamaterial
Metamaterial
Metamaterials are artificial materials engineered to have properties that may not be found in nature. Metamaterials usually gain their properties from structure rather than composition, using small inhomogeneities to create effective macroscopic behavior....

s to go beyond the diffraction limit. The diffraction limit is an inherent limitation in conventional optical devices or lenses. In 2000, a type of lens was proposed, consisting of a metamaterial that compensates for wave decay and reconstructs images
Optical resolution
Optical resolution describes the ability of an imaging system to resolve detail in the object that is being imaged.An imaging system may have many individual components including a lens and recording and display components...

 in the near field
Near and far field
The near field and far field and the transition zone are regions of the electromagnetic radiation field that emanates from a transmitting antenna, or as a result of radiation scattering off an object...

. In addition, both propagating
Wave propagation
Wave propagation is any of the ways in which waves travel.With respect to the direction of the oscillation relative to the propagation direction, we can distinguish between longitudinal wave and transverse waves....

 and evanescent wave
Evanescent wave
An evanescent wave is a nearfield standing wave with an intensity that exhibits exponential decay with distance from the boundary at which the wave was formed. Evanescent waves are a general property of wave-equations, and can in principle occur in any context to which a wave-equation applies...

s contribute to the resolution of the image
Optical resolution
Optical resolution describes the ability of an imaging system to resolve detail in the object that is being imaged.An imaging system may have many individual components including a lens and recording and display components...

. Theory and simulations show that the superlens and hyperlens can work but engineering obstacles need to be overcome.

The first superlens (2004) with a negative refractive index provided resolution three times better than the diffraction limit and was demonstrated at microwave frequencies. In 2005, the first near field superlens (which exceeded the diffraction limit) was demonstrated by N.Fang et al., but the lens did not rely on negative refraction. Instead, a thin silver film was used to enhance the evanescent modes
Evanescent wave
An evanescent wave is a nearfield standing wave with an intensity that exhibits exponential decay with distance from the boundary at which the wave was formed. Evanescent waves are a general property of wave-equations, and can in principle occur in any context to which a wave-equation applies...

 through surface plasmon
Surface plasmon
Surface plasmons , are coherent electron oscillations that exist at the interface between any two materials where the real part of the dielectric function changes sign across the interface...

 coupling. Almost at the same time Melville and Blaikie succeeded with the near field superlens. Other groups followed. Two developments in superlens research were reported in 2008. In the second case, a metamaterial was formed from silver nanowires which were electrochemically deposited in porous aluminium oxide. The material exhibited negative refraction.

The superlens has not yet been demonstrated in the visible or near-infrared domains (Nielsen, R. B.; 2010). Furthermore as dispersive materials these are limited to functioning at a single wavelength. Proposed solutions are metal–dielectric composites (MDCs) and multilayer lens structures. The multi-layer superlens appears to have better subwavelength resolution than the single layer superlens. Losses are less of a concern with the multi-layer system, but so far it appears to be impractical because of impedance
Impedance
Impedance may refer to:*Electrical impedance, the ratio of the voltage phasor to the electric current phasor, a measure of the opposition to time-varying electric current in an electric circuit**Characteristic impedance of a transmission line...

 mis-match.

Image formation

An image of an object can be defined as a tangible or visible representation of the features of that object. A requirement for image formation is interaction with radiation fields. The level of feature detail, or image resolution, depends on the wavelength of radiation
Wavelength
In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats.It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings, and is a...

. For example, with optical microscopy, image production and resolution depends on the wavelength of visible light. And visible light is a small part of the electromagnetic spectrum
Electromagnetic spectrum
The electromagnetic spectrum is the range of all possible frequencies of electromagnetic radiation. The "electromagnetic spectrum" of an object is the characteristic distribution of electromagnetic radiation emitted or absorbed by that particular object....

. However, with a superlens, this limitation on the wavelength of the field may be removed, and a new class of image generated.

Electron beam lithography
Electron beam lithography
Electron beam lithography is the practice of emitting a beam of electrons in a patterned fashion across a surface covered with a film , and of selectively removing either exposed or non-exposed regions of the resist...

 can overcome this resolution limit. Optical microscopy, on the other hand, has been traditionally limited to some value just above 200 nanometers. However, new technologies
Technology
Technology is the making, usage, and knowledge of tools, machines, techniques, crafts, systems or methods of organization in order to solve a problem or perform a specific function. It can also refer to the collection of such tools, machinery, and procedures. The word technology comes ;...

 combined with optical microscopy are beginning to allow for increased feature resolution
Image resolution
Image resolution is an umbrella term that describes the detail an image holds. The term applies to raster digital images, film images, and other types of images. Higher resolution means more image detail....

 (see sections below).

One definition of being constrained by the diffraction barrier, is a resolution cut off at half the wavelength of light
Light
Light or visible light is electromagnetic radiation that is visible to the human eye, and is responsible for the sense of sight. Visible light has wavelength in a range from about 380 nanometres to about 740 nm, with a frequency range of about 405 THz to 790 THz...

. The visible spectrum
Visible spectrum
The visible spectrum is the portion of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called visible light or simply light. A typical human eye will respond to wavelengths from about 390 to 750 nm. In terms of...

 has a range that extends from 390 nanometers to 750 nanometers. Green light
Green Light
Green light or greenlight may refer to:*The wavelengths of light perceived as green by the human eye*The green light on a traffic light*Green-light, formal approval of finance for film or TV production*Fishing light attractor...

, half way in between, is around 500 nanometers. Microscopy takes into account parameters such as lens aperture, distance to the object from the lens, and the refractive index
Refractive index
In optics the refractive index or index of refraction of a substance or medium is a measure of the speed of light in that medium. It is expressed as a ratio of the speed of light in vacuum relative to that in the considered medium....

 of the observed material. This combination defines the resolution cutoff, or optical limit
Microscopy
Microscopy is the technical field of using microscopes to view samples and objects that cannot be seen with the unaided eye...

, which tabulates to 200 nanometers. Therefore, conventional lenses, which literally construct an image of an object by using "ordinary" light waves, discard information that produce very fine, and minuscule details of the object that are contained in evanescent wave
Evanescent wave
An evanescent wave is a nearfield standing wave with an intensity that exhibits exponential decay with distance from the boundary at which the wave was formed. Evanescent waves are a general property of wave-equations, and can in principle occur in any context to which a wave-equation applies...

s. These dimensions are less than 200 nanometers. For this reason, conventional optical systems, such as microscope
Microscope
A microscope is an instrument used to see objects that are too small for the naked eye. The science of investigating small objects using such an instrument is called microscopy...

s, have been unable to accurately image very small, nanometer-sized
Nanotechnology
Nanotechnology is the study of manipulating matter on an atomic and molecular scale. Generally, nanotechnology deals with developing materials, devices, or other structures possessing at least one dimension sized from 1 to 100 nanometres...

 structures or nanometer-sized organisms in vivo
In vivo
In vivo is experimentation using a whole, living organism as opposed to a partial or dead organism, or an in vitro controlled environment. Animal testing and clinical trials are two forms of in vivo research...

, such as individual virus
Virus
A virus is a small infectious agent that can replicate only inside the living cells of organisms. Viruses infect all types of organisms, from animals and plants to bacteria and archaea...

es, or DNA molecules.

According to the Microscopy
Microscopy
Microscopy is the technical field of using microscopes to view samples and objects that cannot be seen with the unaided eye...

 article on Wikipedia, the limitations of standard optical microscopy (bright field microscopy
Bright field microscopy
Bright field microscopy is the simplest of all the optical microscopy illumination techniques. Sample illumination is transmitted white light and contrast in the sample is caused by absorbance of some of the transmitted light in dense areas of the sample...

) lie in three areas;
  • The technique can only image dark or strongly refracting objects
    Refractive index
    In optics the refractive index or index of refraction of a substance or medium is a measure of the speed of light in that medium. It is expressed as a ratio of the speed of light in vacuum relative to that in the considered medium....

     effectively.
  • Diffraction
    Diffraction
    Diffraction refers to various phenomena which occur when a wave encounters an obstacle. Italian scientist Francesco Maria Grimaldi coined the word "diffraction" and was the first to record accurate observations of the phenomenon in 1665...

     limits the object, or cell's
    Cell (biology)
    The cell is the basic structural and functional unit of all known living organisms. It is the smallest unit of life that is classified as a living thing, and is often called the building block of life. The Alberts text discusses how the "cellular building blocks" move to shape developing embryos....

    , resolution to approximately 200 nanometers.
  • Out of focus light
    Light
    Light or visible light is electromagnetic radiation that is visible to the human eye, and is responsible for the sense of sight. Visible light has wavelength in a range from about 380 nanometres to about 740 nm, with a frequency range of about 405 THz to 790 THz...

     from points outside the focal plane reduces image clarity.


Live biological cells
Cell (biology)
The cell is the basic structural and functional unit of all known living organisms. It is the smallest unit of life that is classified as a living thing, and is often called the building block of life. The Alberts text discusses how the "cellular building blocks" move to shape developing embryos....

 in particular generally lack sufficient contrast to be studied successfully, because the internal structures of the cell are colorless and transparent. The most common way to increase contrast is to stain
Staining (biology)
Staining is an auxiliary technique used in microscopy to enhance contrast in the microscopic image. Stains and dyes are frequently used in biology and medicine to highlight structures in biological tissues for viewing, often with the aid of different microscopes...

 the different structures with selective dye
Dye
A dye is a colored substance that has an affinity to the substrate to which it is being applied. The dye is generally applied in an aqueous solution, and requires a mordant to improve the fastness of the dye on the fiber....

s, but this involves killing and fixing the sample. Staining may also introduce artifacts, apparent structural details that are caused by the processing of the specimen and are thus not a legitimate feature of the specimen.

Conventional lens

The conventional glass lens is pervasive throughout our society, and the science
Science
Science is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe...

s. It is one of the fundamental tools of optics
Optics
Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light...

. However, the wavelength of light
Light
Light or visible light is electromagnetic radiation that is visible to the human eye, and is responsible for the sense of sight. Visible light has wavelength in a range from about 380 nanometres to about 740 nm, with a frequency range of about 405 THz to 790 THz...

 is like the width of a pencil used to draw the ordinary images. The limit becomes noticeable, for example, where the laser used in a digital video system can only detect and deliver details based on the wavelength of light from a DVD
DVD
A DVD is an optical disc storage media format, invented and developed by Philips, Sony, Toshiba, and Panasonic in 1995. DVDs offer higher storage capacity than Compact Discs while having the same dimensions....

. The image cannot be rendered any sharper beyond this limitation.

When an object emits or reflects light there are two types of electromagnetic radiation
Electromagnetic radiation
Electromagnetic radiation is a form of energy that exhibits wave-like behavior as it travels through space...

 associated with this phenomenon
Phenomenon
A phenomenon , plural phenomena, is any observable occurrence. Phenomena are often, but not always, understood as 'appearances' or 'experiences'...

. These are the near field
Evanescent wave
An evanescent wave is a nearfield standing wave with an intensity that exhibits exponential decay with distance from the boundary at which the wave was formed. Evanescent waves are a general property of wave-equations, and can in principle occur in any context to which a wave-equation applies...

 radiation and the far field
Angular resolution
Angular resolution, or spatial resolution, describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object...

 radiation. As implied by its description, the far field escapes beyond the object. It is then easily captured and manipulated by a conventional glass lens. However, useful (nanometer-sized) resolution details are not observed, because they are hidden in the near field. They remain localized, staying much closer to the light emitting object, unable to travel, and be captured by the conventional lens. Controlling the near field radiation, for high resolution, can be accomplished with a new class of materials not found in nature. These are unlike familiar solid
Solid
Solid is one of the three classical states of matter . It is characterized by structural rigidity and resistance to changes of shape or volume. Unlike a liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire volume available to it like a...

s, such as crystals
Crystal structure
In mineralogy and crystallography, crystal structure is a unique arrangement of atoms or molecules in a crystalline liquid or solid. A crystal structure is composed of a pattern, a set of atoms arranged in a particular way, and a lattice exhibiting long-range order and symmetry...

, which derive their properties from atom
Atom
The atom is a basic unit of matter that consists of a dense central nucleus surrounded by a cloud of negatively charged electrons. The atomic nucleus contains a mix of positively charged protons and electrically neutral neutrons...

ic and molecular units. The new material class, termed metamaterials, obtains its properties from its artificially larger structure. This has resulted in novel properties, and novel responses, which allow for details of images
Angular resolution
Angular resolution, or spatial resolution, describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object...

 that surpass the limitations imposed by the wavelength of light.

Subwavelength imaging

This has led to the desire to view live biological cell
Cell (biology)
The cell is the basic structural and functional unit of all known living organisms. It is the smallest unit of life that is classified as a living thing, and is often called the building block of life. The Alberts text discusses how the "cellular building blocks" move to shape developing embryos....

 interactions in a real time, natural environment
Natural environment
The natural environment encompasses all living and non-living things occurring naturally on Earth or some region thereof. It is an environment that encompasses the interaction of all living species....

, and the need for subwavelength imaging. Subwavelength imaging can be defined as optical microscopy with the ability to see details of an object or organism below the wavelength of visible light (see discussion in the above sections). In other words, to have capability to observe, in real time, below 200 nanometers. Optical microscopy is a non-invasive technique and technology, because everyday light is the transmission medium
Transmission medium
A transmission medium is a material substance that can propagate energy waves...

. Imaging below the optical limit in optical microscopy (subwavelength) can be engineered for the cellular level
Cell (biology)
The cell is the basic structural and functional unit of all known living organisms. It is the smallest unit of life that is classified as a living thing, and is often called the building block of life. The Alberts text discusses how the "cellular building blocks" move to shape developing embryos....

, and nanometer level
Nanotechnology
Nanotechnology is the study of manipulating matter on an atomic and molecular scale. Generally, nanotechnology deals with developing materials, devices, or other structures possessing at least one dimension sized from 1 to 100 nanometres...

.

For example, in 2007 a technique was demonstrated where a metamaterials-based lens coupled with a conventional optical lens could manipulate visible light to see (nanoscale) patterns that were too small to be observed with an ordinary optical microscope
Optical microscope
The optical microscope, often referred to as the "light microscope", is a type of microscope which uses visible light and a system of lenses to magnify images of small samples. Optical microscopes are the oldest design of microscope and were possibly designed in their present compound form in the...

. This has potential applications not only for observing a whole living cell
Cell (biology)
The cell is the basic structural and functional unit of all known living organisms. It is the smallest unit of life that is classified as a living thing, and is often called the building block of life. The Alberts text discusses how the "cellular building blocks" move to shape developing embryos....

, or for observing cellular processes, such as how protein
Protein
Proteins are biochemical compounds consisting of one or more polypeptides typically folded into a globular or fibrous form, facilitating a biological function. A polypeptide is a single linear polymer chain of amino acids bonded together by peptide bonds between the carboxyl and amino groups of...

s and fat
Fat
Fats consist of a wide group of compounds that are generally soluble in organic solvents and generally insoluble in water. Chemically, fats are triglycerides, triesters of glycerol and any of several fatty acids. Fats may be either solid or liquid at room temperature, depending on their structure...

s move in and out of cells. In the technology
Technology
Technology is the making, usage, and knowledge of tools, machines, techniques, crafts, systems or methods of organization in order to solve a problem or perform a specific function. It can also refer to the collection of such tools, machinery, and procedures. The word technology comes ;...

 domain, it could be used to improve the first steps of photolithography
Photolithography
Photolithography is a process used in microfabrication to selectively remove parts of a thin film or the bulk of a substrate. It uses light to transfer a geometric pattern from a photomask to a light-sensitive chemical "photoresist", or simply "resist," on the substrate...

 and nanolithography
Nanolithography
Nanolithography is the branch of nanotechnology concerned with the study and application of fabricating nanometer-scale structures, meaning patterns with at least one lateral dimension between the size of an individual atom and approximately 100 nm...

, essential for manufacturing ever smaller computer chips.

Focusing at subwavelength has become a unique imaging
Optical imaging
Optical imaging is an imaging technique.Optics usually describes the behavior of visible, ultraviolet, and infrared light used in imaging.Because light is an electromagnetic wave, similar phenomena occur in X-rays, microwaves, radio waves. Chemical imaging or molecular imaging involves inference...

 technique which allows visualization of features on the viewed object which are smaller than the wavelength of the photons in use. A photon is the minimum unit of light (see article
Photon
In physics, a photon is an elementary particle, the quantum of the electromagnetic interaction and the basic unit of light and all other forms of electromagnetic radiation. It is also the force carrier for the electromagnetic force...

). While previously thought to be physically impossible, subwavelength imaging has been made possible through the development of metamaterials. This is generally accomplished using a layer of metal such as gold
Gold
Gold is a chemical element with the symbol Au and an atomic number of 79. Gold is a dense, soft, shiny, malleable and ductile metal. Pure gold has a bright yellow color and luster traditionally considered attractive, which it maintains without oxidizing in air or water. Chemically, gold is a...

 or silver
Silver
Silver is a metallic chemical element with the chemical symbol Ag and atomic number 47. A soft, white, lustrous transition metal, it has the highest electrical conductivity of any element and the highest thermal conductivity of any metal...

 a few atoms thick, which acts as a superlens, or by means of 1D and 2D photonic crystals. There is a subtle interplay between propagating waves, evanescent waves, near field imaging and far field imaging discussed in the sections below.

Early subwavelength imaging

Metamaterial lenses (Superlens) are able to compensate for the exponential evanescent wave
Evanescent wave
An evanescent wave is a nearfield standing wave with an intensity that exhibits exponential decay with distance from the boundary at which the wave was formed. Evanescent waves are a general property of wave-equations, and can in principle occur in any context to which a wave-equation applies...

 decay via negative refractive index, and in essence reconstruct the image
Image
An image is an artifact, for example a two-dimensional picture, that has a similar appearance to some subject—usually a physical object or a person.-Characteristics:...

. Prior to metamaterials, proposals were advanced in the 1970s to avoid this evanescent decay. For example, in 1974 proposals for two-dimensional, fabrication techniques were presented. These proposals included contact imaging
Contact lithography
Contact lithography, also known as contact printing, is a form of photolithography whereby the image to be printed is obtained by illumination of a photomask in direct contact with a substrate coated with an imaging photoresist layer.-History:...

 to create a pattern in relief, photolithography
Photolithography
Photolithography is a process used in microfabrication to selectively remove parts of a thin film or the bulk of a substrate. It uses light to transfer a geometric pattern from a photomask to a light-sensitive chemical "photoresist", or simply "resist," on the substrate...

, electron lithography, X-ray lithography
X-ray lithography
300px|thumbX-ray lithography, is a process used in electronic industry to selectively remove parts of a thin film. It uses X-rays to transfer a geometric pattern from a mask to a light-sensitive chemical photoresist, or simply "resist," on the substrate...

, or ion
Ion
An ion is an atom or molecule in which the total number of electrons is not equal to the total number of protons, giving it a net positive or negative electrical charge. The name was given by physicist Michael Faraday for the substances that allow a current to pass between electrodes in a...

 bombardment, on an appropriate planar substrate.

The shared technological goals of the metamaterial lens and the variety of lithography
Lithography
Lithography is a method for printing using a stone or a metal plate with a completely smooth surface...

 aim to optically resolve
Optical resolution
Optical resolution describes the ability of an imaging system to resolve detail in the object that is being imaged.An imaging system may have many individual components including a lens and recording and display components...

 features having dimensions much smaller than that of the vacuum wavelength
Wavelength
In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats.It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings, and is a...

 of the exposing light
Light
Light or visible light is electromagnetic radiation that is visible to the human eye, and is responsible for the sense of sight. Visible light has wavelength in a range from about 380 nanometres to about 740 nm, with a frequency range of about 405 THz to 790 THz...

.

In 1981 two different techniques of contact imaging of planar (flat) submicroscopic
Microscopic
The microscopic scale is the scale of size or length used to describe objects smaller than those that can easily be seen by the naked eye and which require a lens or microscope to see them clearly.-History:...

 metal patterns with blue light
Visible spectrum
The visible spectrum is the portion of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called visible light or simply light. A typical human eye will respond to wavelengths from about 390 to 750 nm. In terms of...

 (400 nm
Nanometre
A nanometre is a unit of length in the metric system, equal to one billionth of a metre. The name combines the SI prefix nano- with the parent unit name metre .The nanometre is often used to express dimensions on the atomic scale: the diameter...

) were demonstrated. One demonstration resulted in an image resolution
Image resolution
Image resolution is an umbrella term that describes the detail an image holds. The term applies to raster digital images, film images, and other types of images. Higher resolution means more image detail....

 of 100 nm and the other a resolution of 50 to 70 nm.

Since at least 1998 near field
Near and far field
The near field and far field and the transition zone are regions of the electromagnetic radiation field that emanates from a transmitting antenna, or as a result of radiation scattering off an object...

 optical lithography was designed to create nanometer-scale features. Research on this technology continued as the first experimentally demonstrated negative index metamaterial came into existence in 2000–2001. The effectiveness of electron-beam lithography was also being researched at the beginning of the new millennium for nanometer-scale applications. Imprint lithography
Nanoimprint Lithography
Nanoimprint lithography is a method of fabricating nanometer scale patterns. It is a simple nanolithography process with low cost, high throughput and high resolution. It creates patterns by mechanical deformation of imprint resist and subsequent processes. The imprint resist is typically a monomer...

 was shown to have desirable advantages for nanometer-scaled research and technology.

Advanced deep UV photolithography
Photolithography
Photolithography is a process used in microfabrication to selectively remove parts of a thin film or the bulk of a substrate. It uses light to transfer a geometric pattern from a photomask to a light-sensitive chemical "photoresist", or simply "resist," on the substrate...

 can now offer sub-100 nm resolution, yet the minimum feature size and spacing between patterns are determined by the diffraction limit of light. Its derivative technologies such as evanescent near-field
Near and far field
The near field and far field and the transition zone are regions of the electromagnetic radiation field that emanates from a transmitting antenna, or as a result of radiation scattering off an object...

 lithography, near-field interference lithography, and phase-shifting mask lithography were developed to overcome the diffraction limit.

In the year 2000, John Pendry
John Pendry
Sir John Brian Pendry, FRS FInstP is an English theoretical physicist known for his research into refractive indexes and creation of the first practical "Invisibility Cloak"...

 proposed using a metamaterial lens to, achieve nanometer-scaled imaging for focusing below the wavelength of light.

Perfect lens

When the world is observed through conventional lenses
Lens (optics)
A lens is an optical device with perfect or approximate axial symmetry which transmits and refracts light, converging or diverging the beam. A simple lens consists of a single optical element...

, the sharpness of the image
Image
An image is an artifact, for example a two-dimensional picture, that has a similar appearance to some subject—usually a physical object or a person.-Characteristics:...

 is determined by and limited to the wavelength of light
Light
Light or visible light is electromagnetic radiation that is visible to the human eye, and is responsible for the sense of sight. Visible light has wavelength in a range from about 380 nanometres to about 740 nm, with a frequency range of about 405 THz to 790 THz...

. Around the year 2000, a slab of negative index metamaterial was theorized to create a lens with capabilities beyond conventional (positive index
Refractive index
In optics the refractive index or index of refraction of a substance or medium is a measure of the speed of light in that medium. It is expressed as a ratio of the speed of light in vacuum relative to that in the considered medium....

) lenses. Sir John Pendry
John Pendry
Sir John Brian Pendry, FRS FInstP is an English theoretical physicist known for his research into refractive indexes and creation of the first practical "Invisibility Cloak"...

, a British physicist
Physicist
A physicist is a scientist who studies or practices physics. Physicists study a wide range of physical phenomena in many branches of physics spanning all length scales: from sub-atomic particles of which all ordinary matter is made to the behavior of the material Universe as a whole...

, proposed that a thin slab of negative refractive metamaterial might overcome known problems with common lenses to achieve a "perfect" lens that would focus the entire spectrum, both the propagating
Wave propagation
Wave propagation is any of the ways in which waves travel.With respect to the direction of the oscillation relative to the propagation direction, we can distinguish between longitudinal wave and transverse waves....

 as well as the evanescent
Evanescent wave
An evanescent wave is a nearfield standing wave with an intensity that exhibits exponential decay with distance from the boundary at which the wave was formed. Evanescent waves are a general property of wave-equations, and can in principle occur in any context to which a wave-equation applies...

 spectra.

A slab of silver
Silver
Silver is a metallic chemical element with the chemical symbol Ag and atomic number 47. A soft, white, lustrous transition metal, it has the highest electrical conductivity of any element and the highest thermal conductivity of any metal...

 was proposed as the metamaterial. As light moves away (propagates) from the source, it acquires an arbitrary phase
Phase (waves)
Phase in waves is the fraction of a wave cycle which has elapsed relative to an arbitrary point.-Formula:The phase of an oscillation or wave refers to a sinusoidal function such as the following:...

. Through a conventional lens the phase remains consistent, but the evanescent waves decay exponentially
Exponential function
In mathematics, the exponential function is the function ex, where e is the number such that the function ex is its own derivative. The exponential function is used to model a relationship in which a constant change in the independent variable gives the same proportional change In mathematics,...

. In the flat metamaterial DNG slab, normally decaying evanescent waves are contrarily amplified
Amplifier
Generally, an amplifier or simply amp, is a device for increasing the power of a signal.In popular use, the term usually describes an electronic amplifier, in which the input "signal" is usually a voltage or a current. In audio applications, amplifiers drive the loudspeakers used in PA systems to...

. Furthermore, as the evanescent waves are now amplified, the phase is reversed.

Therefore, a type of lens was proposed, consisting of a metal film metamaterial. When illuminated near its plasma frequency, the lens could be used for super-resolution imaging that compensates for wave decay and reconstructs images
Optical resolution
Optical resolution describes the ability of an imaging system to resolve detail in the object that is being imaged.An imaging system may have many individual components including a lens and recording and display components...

 in the near-field
Near and far field
The near field and far field and the transition zone are regions of the electromagnetic radiation field that emanates from a transmitting antenna, or as a result of radiation scattering off an object...

. In addition, both propagating
Wave propagation
Wave propagation is any of the ways in which waves travel.With respect to the direction of the oscillation relative to the propagation direction, we can distinguish between longitudinal wave and transverse waves....

 and evanescent waves contribute to the resolution of the image
Optical resolution
Optical resolution describes the ability of an imaging system to resolve detail in the object that is being imaged.An imaging system may have many individual components including a lens and recording and display components...

.

Pendry suggested that left-handed slabs allow "perfect imaging" if they are completely lossless, impedance matched
Impedance matching
In electronics, impedance matching is the practice of designing the input impedance of an electrical load to maximize the power transfer and/or minimize reflections from the load....

, and their refractive index
Refractive index
In optics the refractive index or index of refraction of a substance or medium is a measure of the speed of light in that medium. It is expressed as a ratio of the speed of light in vacuum relative to that in the considered medium....

 is –1 relative to the surrounding medium. Theoretically, this would be a breakthrough in that the optical version resolves objects as minuscule as nanometers across. Pendry predicted that Double negative metamaterials (DNG) with a refractive index of n = −1, can act, at least in principle, as a "perfect lens" allowing imaging resolution which is limited not by the wavelength, but rather by material quality.

Other studies concerning the perfect lens

Further research
Research
Research can be defined as the scientific search for knowledge, or as any systematic investigation, to establish novel facts, solve new or existing problems, prove new ideas, or develop new theories, usually using a scientific method...

 demonstrated that Pendry's theory behind the perfect lens was not exactly correct. The analysis of the focusing of the evanescent
Evanescent wave
An evanescent wave is a nearfield standing wave with an intensity that exhibits exponential decay with distance from the boundary at which the wave was formed. Evanescent waves are a general property of wave-equations, and can in principle occur in any context to which a wave-equation applies...

 spectrum (equations 13–21 in reference ) was flawed. In addition, this applies to only one (theoretical) instance, and that is one particular medium that is lossless, nondispersive and the constituent parameters are defined as:
ε(ω) / ε0 = µ(ω) / µ0 = −1, which in turn results in a negative refraction of n = −1


However, the final intuitive result of this theory that both the propagating and evanescent
Wave propagation
Wave propagation is any of the ways in which waves travel.With respect to the direction of the oscillation relative to the propagation direction, we can distinguish between longitudinal wave and transverse waves....

 waves are focused, resulting in a converging focal point
Focus (optics)
In geometrical optics, a focus, also called an image point, is the point where light rays originating from a point on the object converge. Although the focus is conceptually a point, physically the focus has a spatial extent, called the blur circle. This non-ideal focusing may be caused by...

 within the slab and another convergence (focal point) beyond the slab turned out to be correct.

If the DNG metamaterial medium
Transmission medium
A transmission medium is a material substance that can propagate energy waves...

 has a large negative index or becomes lossy
Absorption (electromagnetic radiation)
In physics, absorption of electromagnetic radiation is the way by which the energy of a photon is taken up by matter, typically the electrons of an atom. Thus, the electromagnetic energy is transformed to other forms of energy for example, to heat. The absorption of light during wave propagation is...

 or dispersive, Pendry's perfect lens effect cannot be realized. As a result, the perfect lens effect does not exist in general. According to FDTD simulations at the time (2001), the DNG slab acts like a converter from a pulsed cylindrical wave to a pulsed beam. Furthermore, in reality (in practice), a DNG medium must be and is dispersive and lossy, which can have either desirable or undesirable effects, depending on the research or application. Consequently, Pendry's perfect lens effect is inaccessible with any metamaterial designed to be a DNG medium.

Another analysis, in 2002, of the perfect lens concept
Concept
The word concept is used in ordinary language as well as in almost all academic disciplines. Particularly in philosophy, psychology and cognitive sciences the term is much used and much discussed. WordNet defines concept: "conception, construct ". However, the meaning of the term concept is much...

 showed it to be in error while using the lossless, dispersionless DNG as the subject. This analysis mathematically demonstrated that subtleties of evanescent waves, restriction to a finite
Physics
Physics is a natural science that involves the study of matter and its motion through spacetime, along with related concepts such as energy and force. More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.Physics is one of the oldest academic...

 slab and absorption had led to inconsistencies and divergencies that contradict the basic mathematical properties of scattered wave fields. For example, this analysis stated that absorption
Absorption (electromagnetic radiation)
In physics, absorption of electromagnetic radiation is the way by which the energy of a photon is taken up by matter, typically the electrons of an atom. Thus, the electromagnetic energy is transformed to other forms of energy for example, to heat. The absorption of light during wave propagation is...

, which is linked to dispersion
Dispersion (optics)
In optics, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency, or alternatively when the group velocity depends on the frequency.Media having such a property are termed dispersive media...

, is always present in practice, and absorption tends to transform amplified waves into decaying ones inside this medium (DNG).

A third analysis of Pendry's perfect lens concept, published in 2003, used the recent demonstration of negative refraction
Negative refraction
Negative refraction is the name for an electromagnetic phenomenon where light rays are refracted at an interface in the reverse sense to that normally expected...

 at microwave
Microwave
Microwaves, a subset of radio waves, have wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz and 300 GHz. This broad definition includes both UHF and EHF , and various sources use different boundaries...

 frequencies as confirming the viability of the fundamental concept of the perfect lens. In addition, this demonstration was thought to be experimental evidence
Evidence
Evidence in its broadest sense includes everything that is used to determine or demonstrate the truth of an assertion. Giving or procuring evidence is the process of using those things that are either presumed to be true, or were themselves proven via evidence, to demonstrate an assertion's truth...

 that a planar DNG metamaterial would refocus the far field radiation of a point source. However, the perfect lens would require significantly different values for permittivity
Permittivity
In electromagnetism, absolute permittivity is the measure of the resistance that is encountered when forming an electric field in a medium. In other words, permittivity is a measure of how an electric field affects, and is affected by, a dielectric medium. The permittivity of a medium describes how...

, permeability
Permeability (electromagnetism)
In electromagnetism, permeability is the measure of the ability of a material to support the formation of a magnetic field within itself. In other words, it is the degree of magnetization that a material obtains in response to an applied magnetic field. Magnetic permeability is typically...

, and spatial periodicity than the demonstrated negative refractive sample.

This study agrees that any deviation from conditions where ε = µ = −1 results in the normal, conventional, imperfect image that degrades exponentially i.e., the diffraction limit. The perfect lens solution in the absence of losses is again, not practical, and can lead to paradoxical interpretations.

It was determined that although resonant surface plasmons are undesirable for imaging, these turn out to be essential for recovery of decaying evanescent waves. This analysis discovered that metamaterial periodicity has a significant effect on the recovery of types of evanescent components. In addition, achieving subwavelength resolution
Photolithography
Photolithography is a process used in microfabrication to selectively remove parts of a thin film or the bulk of a substrate. It uses light to transfer a geometric pattern from a photomask to a light-sensitive chemical "photoresist", or simply "resist," on the substrate...

 is possible with current technologies. Negative refractive indices have been demonstrated in structured metamaterials. Such materials can be engineered to have tunable material parameters, and so achieve the optimal conditions. Losses can be minimized in structures utilizing superconducting elements. Furthermore, consideration of alternate structures may lead to configurations of left-handed materials that can achieve subwavelength focusing. Such structures were being studied at the time.

Near-field imaging with magnetic wires

Pendry's theoretical lens was designed to focus both propagating wave
Wave
In physics, a wave is a disturbance that travels through space and time, accompanied by the transfer of energy.Waves travel and the wave motion transfers energy from one point to another, often with no permanent displacement of the particles of the medium—that is, with little or no associated mass...

s and the near-field
Near and far field
The near field and far field and the transition zone are regions of the electromagnetic radiation field that emanates from a transmitting antenna, or as a result of radiation scattering off an object...

 evanescent waves. From permittivity
Permittivity
In electromagnetism, absolute permittivity is the measure of the resistance that is encountered when forming an electric field in a medium. In other words, permittivity is a measure of how an electric field affects, and is affected by, a dielectric medium. The permittivity of a medium describes how...

 "ε" and magnetic permeability "µ" an index of refraction "n" is derived. The index of refraction determines how light is bent on traversing from one material to another. In 2003, it was suggested that a metamaterial constructed with alternating, parallel, layers of n = −1 materials and n = +1 materials, would be a more effective design for a metamaterial lens. It is an effective medium made up of a multi-layer stack, which exhibits birefringence
Birefringence
Birefringence, or double refraction, is the decomposition of a ray of light into two rays when it passes through certain anisotropic materials, such as crystals of calcite or boron nitride. The effect was first described by the Danish scientist Rasmus Bartholin in 1669, who saw it in calcite...

, n2 = ∞, nx = 0. The effective refractive indices are then perpendicular
Perpendicular
In geometry, two lines or planes are considered perpendicular to each other if they form congruent adjacent angles . The term may be used as a noun or adjective...

 and parallel
Parallel (geometry)
Parallelism is a term in geometry and in everyday life that refers to a property in Euclidean space of two or more lines or planes, or a combination of these. The assumed existence and properties of parallel lines are the basis of Euclid's parallel postulate. Two lines in a plane that do not...

, respectively.

Like a conventional lens
Lens (optics)
A lens is an optical device with perfect or approximate axial symmetry which transmits and refracts light, converging or diverging the beam. A simple lens consists of a single optical element...

, the z-direction is along the axis
Optical axis
An optical axis is a line along which there is some degree of rotational symmetry in an optical system such as a camera lens or microscope.The optical axis is an imaginary line that defines the path along which light propagates through the system...

 of the roll. The resonant frequency (w0) – close to 21.3 MHz – is determined by the construction of the roll. Damping is achieved by the inherent resistance of the layers and the lossy part of permittivity. The details of construction are found in ref.

Simply put, as the field pattern is transferred from the input to the output face of a slab, so the image information is transported across each layer. This was experimentally demonstrated. To test the two-dimensional imaging performance of the material, an antenna was constructed from a pair of anti-parallel wires in the shape of the letter M. This generated a line of magnetic flux, so providing a characteristic field pattern for imaging. It was placed horizontally, and the material, consisting of 271 Swiss roll
Swiss roll
A Swiss roll or jelly roll is a type of sponge cake roll. The thin cake is made of eggs, flour and sugar and baked in a very shallow rectangular baking tray, called a sheet pan. The cake is removed from the pan and spread with jam or buttercream, rolled up, and served in circular slices.The...

s tuned to 21.5 MHz, was positioned on top of it. The material does indeed act as an image transfer device for the magnetic field. The shape of the antenna is faithfully reproduced in the output plane, both in the distribution of the peak intensity, and in the “valleys” that bound the M.

A consistent characteristic of the very near (evanescent) field is that the electric
Electric field
In physics, an electric field surrounds electrically charged particles and time-varying magnetic fields. The electric field depicts the force exerted on other electrically charged objects by the electrically charged particle the field is surrounding...

 and magnetic field
Magnetic field
A magnetic field is a mathematical description of the magnetic influence of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude ; as such it is a vector field.Technically, a magnetic field is a pseudo vector;...

s are largely decoupled. This allows for nearly independent manipulation of the electric field with the permittivity
Permittivity
In electromagnetism, absolute permittivity is the measure of the resistance that is encountered when forming an electric field in a medium. In other words, permittivity is a measure of how an electric field affects, and is affected by, a dielectric medium. The permittivity of a medium describes how...

 and the magnetic field with the permeability.

Furthermore, this is highly anisotropic system. Therefore, the transverse (perpendicular) components of the EM field which radiate the material, that is the wavevector components kx and ky, are decoupled from the longitudinal component kz. So, the field pattern should be transferred from the input to the output face of a slab of material without degradation of the image information.

Optical super lens with silver metamaterial



In 2003, a group of researchers showed that optical evanescent waves would be enhanced as they passed through a silver
Silver
Silver is a metallic chemical element with the chemical symbol Ag and atomic number 47. A soft, white, lustrous transition metal, it has the highest electrical conductivity of any element and the highest thermal conductivity of any metal...

 metamaterial lens
Lens (optics)
A lens is an optical device with perfect or approximate axial symmetry which transmits and refracts light, converging or diverging the beam. A simple lens consists of a single optical element...

. This was referred to as a diffraction-free lens. Although a coherent
Coherence (physics)
In physics, coherence is a property of waves that enables stationary interference. More generally, coherence describes all properties of the correlation between physical quantities of a wave....

, high-resolution, image was not intended, nor achieved, regeneration of the evanescent field was experiment
Experiment
An experiment is a methodical procedure carried out with the goal of verifying, falsifying, or establishing the validity of a hypothesis. Experiments vary greatly in their goal and scale, but always rely on repeatable procedure and logical analysis of the results...

ally demonstrated.

By 2003 it was known for decades that evanescent waves could be enhanced by producing excited state
Excited state
Excitation is an elevation in energy level above an arbitrary baseline energy state. In physics there is a specific technical definition for energy level which is often associated with an atom being excited to an excited state....

s at the interface
Interface (chemistry)
An interface is a surface forming a common boundary among two different phases, such as an insoluble solid and a liquid, two immiscible liquids or a liquid and an insoluble gas. The importance of the interface depends on which type of system is being treated: the bigger the quotient area/volume,...

 surfaces. However, the use of surface plasmon
Surface plasmon
Surface plasmons , are coherent electron oscillations that exist at the interface between any two materials where the real part of the dielectric function changes sign across the interface...

s to reconstruct evanescent components was not tried until Pendry's recent proposal (see "Perfect lens" above). By studying films of varying thickness it has been noted that a rapidly growing transmission coefficient
Transmission coefficient
The transmission coefficient is used in physics and electrical engineering when wave propagation in a medium containing discontinuities is considered...

 occurs, under the appropriate conditions. This demonstration provided direct evidence that the foundation of superlensing is solid, and suggested the path that will enable the observation of superlensing at optical wavelengths.

In 2005, a coherent
Coherence (physics)
In physics, coherence is a property of waves that enables stationary interference. More generally, coherence describes all properties of the correlation between physical quantities of a wave....

, high-resolution, image
Optical resolution
Optical resolution describes the ability of an imaging system to resolve detail in the object that is being imaged.An imaging system may have many individual components including a lens and recording and display components...

 was produced (based on the 2003 results). A thinner slab of silver
Silver
Silver is a metallic chemical element with the chemical symbol Ag and atomic number 47. A soft, white, lustrous transition metal, it has the highest electrical conductivity of any element and the highest thermal conductivity of any metal...

 (35 nm) was better for sub–diffraction-limited imaging, which results in one-sixth of the illumination wavelength. This type of lens was used to compensate for wave decay and reconstruct images in the near-field
Near and far field
The near field and far field and the transition zone are regions of the electromagnetic radiation field that emanates from a transmitting antenna, or as a result of radiation scattering off an object...

. Prior attempts to create a working superlens used a slab of silver that was too thick.

Objects were imaged as small as 40 nm across. In 2005 the imaging resolution limit for optical microscope
Optical microscope
The optical microscope, often referred to as the "light microscope", is a type of microscope which uses visible light and a system of lenses to magnify images of small samples. Optical microscopes are the oldest design of microscope and were possibly designed in their present compound form in the...

s was at around 400 nm, which is about one tenth the diameter of a red blood cell
Red blood cell
Red blood cells are the most common type of blood cell and the vertebrate organism's principal means of delivering oxygen to the body tissues via the blood flow through the circulatory system...

. With the silver superlens this results in a resolution of one hundredth of the diameter of a red blood cell.

Conventional lenses, whether man-made or natural, create images by capturing the propagating light waves all objects emit and then bending them. The angle of the bend is determined by the index of refraction and has always been positive until the fabrication of artificial negative index materials. Objects also emit evanescent waves that carry details of the object, but are unobtainable with conventional optics. Such evanescent waves decay exponentially and thus never become part of the image resolution, an optics threshold known as the diffraction limit. Breaking this diffraction limit, and capturing evanescent waves are critical to the creation of a 100-percent perfect representation of an object.

In addition, conventional optical materials
Lens (optics)
A lens is an optical device with perfect or approximate axial symmetry which transmits and refracts light, converging or diverging the beam. A simple lens consists of a single optical element...

 suffer a diffraction limit because only the propagating components are transmitted (by the optical material) from a light source. The non-propagating components, the evanescent waves, are not transmitted. Moreover, lenses that improve image resolution by increasing the index of refraction are limited by the availability of high-index materials, and point by point subwavelength imaging of electron microscopy also has limitations when compared to the potential of a working superlens. Scanning electron and atomic force microscopes are now used to capture detail down to a few nanometers. However, such microscopes create images by scanning objects point by point, which means they are typically limited to non-living samples, and image capture times can take up to several minutes.

With current optical microscopes, scientists can only make out relatively large structures within a cell, such as its nucleus and mitochondria. With a superlens, optical microscopes could one day reveal the movements of individual proteins traveling along the microtubules that make up a cell's skeleton, the researchers said. Optical microscopes can capture an entire frame with a single snapshot in a fraction of a second With superlenses this opens up nanoscale imaging to living materials, which can help biologists better understand cell structure and function in real time.

Advances of magnetic coupling in the THz and infrared
Infrared
Infrared light is electromagnetic radiation with a wavelength longer than that of visible light, measured from the nominal edge of visible red light at 0.74 micrometres , and extending conventionally to 300 µm...

 regime provided the realization of a possible metamaterial superlens. However, in the near field, the electric and magnetic responses of materials are decoupled. Therefore, for transverse magnetic (TM) waves, only the permittivity needed to be considered. Noble metals, then become natural selections for superlensing because negative permittivity is easily achieved.

By designing the thin metal slab so that the surface current oscillations (the surface plasmons) match the evanescent waves from the object, the superlens is able to substantially enhance the amplitude of the field. Superlensing results from the enhancement of evanescent waves by surface plasmons.

The key to the superlens is its ability to significantly enhance and recover the evanescent waves that carry information at very small scales. This enables imaging well below the diffraction limit. No lens is yet able to completely reconstitute all the evanescent waves emitted by an object, so the goal of a 100-percent perfect image will persist. However, many scientists believe that a true perfect lens is not possible because there will always be some energy absorption loss as the waves pass through any known material. In comparison the superlens image is substantially better than the one created without the silver superlens.

50-nm flat silver layer

In February 2004, an electromagnetic radiation
Electromagnetic radiation
Electromagnetic radiation is a form of energy that exhibits wave-like behavior as it travels through space...

 focusing system, based on a negative index metamaterial
Metamaterial
Metamaterials are artificial materials engineered to have properties that may not be found in nature. Metamaterials usually gain their properties from structure rather than composition, using small inhomogeneities to create effective macroscopic behavior....

 plate, accomplished subwavelength imaging in the microwave domain
Microwave
Microwaves, a subset of radio waves, have wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz and 300 GHz. This broad definition includes both UHF and EHF , and various sources use different boundaries...

. This showed that obtaining separated image
Image
An image is an artifact, for example a two-dimensional picture, that has a similar appearance to some subject—usually a physical object or a person.-Characteristics:...

s at much less than the wavelength
Wavelength
In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats.It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings, and is a...

 of light
Light
Light or visible light is electromagnetic radiation that is visible to the human eye, and is responsible for the sense of sight. Visible light has wavelength in a range from about 380 nanometres to about 740 nm, with a frequency range of about 405 THz to 790 THz...

 is possible. Also, in 2004, a silver layer
Silver
Silver is a metallic chemical element with the chemical symbol Ag and atomic number 47. A soft, white, lustrous transition metal, it has the highest electrical conductivity of any element and the highest thermal conductivity of any metal...

 was used for sub-micrometre
Micrometre
A micrometer , is by definition 1×10-6 of a meter .In plain English, it means one-millionth of a meter . Its unit symbol in the International System of Units is μm...

 near-field imaging. Super resolution was not achieved, but this was intended. The silver layer was too thick to allow significant enhancements of evanescent field components.

In early 2005, feature resolution was achieved with a different silver layer. Though this was not an actual image, it was intended. Dense feature resolution down to 250 nm was produced in a 50 nm thick photoresist
Photoresist
A photoresist is a light-sensitive material used in several industrial processes, such as photolithography and photoengraving to form a patterned coating on a surface.-Tone:Photoresists are classified into two groups: positive resists and negative resists....

 using illumination from a mercury lamp. Using simulations (FDTD), the study noted that resolution improvements could be expected for imaging through silver lenses, rather than another method of near field imaging.

Building on this prior research, super resolution was achieved at optical frequencies
Infrared
Infrared light is electromagnetic radiation with a wavelength longer than that of visible light, measured from the nominal edge of visible red light at 0.74 micrometres , and extending conventionally to 300 µm...

 using a 50 nm flat silver layer. The capability of resolving an image
Optical resolution
Optical resolution describes the ability of an imaging system to resolve detail in the object that is being imaged.An imaging system may have many individual components including a lens and recording and display components...

 beyond the diffraction limit, for far-field imaging
Fraunhofer diffraction
In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens....

, is defined here as super-resolution.

The image fidelity is much improved over earlier results of the previous experimental lens stack. Imaging of sub-micrometre features has been greatly improved by using thinner silver and spacer layers, and by reducing the surface roughness of the lens stack. The ability of the silver lenses to image the gratings has been used as the ultimate resolution test, as there is a concrete limit for the ability of a conventional (far field) lens to image a periodic object – in this case the image is a diffraction grating. For normal-incidence illumination the minimum spatial period that can be resolved with wavelength λ through a medium with refractive index n is λ/n. Zero contrast would therefore be expected in any (conventional) far-field image below this limit, no matter how good the imaging resist might be.

The (super) lens stack here results in a computational result of a diffraction-limited resolution of 243 nm. Gratings with periods from 500 nm down to 170 nm are imaged, with the depth of the modulation in the resist reducing as the grating period reduces. All of the gratings with periods above the diffraction limit (243 nm) are well resolved. The key results of this experiment are super-imaging of the sub-diffraction limit for 200 nm and 170 nm periods. In both cases the gratings are resolved, even though the contrast is diminished, but this gives experimental confirmation of Pendry's superlensing proposal.
For further information see Fresnel number
Fresnel number
The Fresnel number F, named after the physicist Augustin-Jean Fresnel, is a dimensionless number occurring in optics, in particular in diffraction theory....

 and Fresnel diffraction
Fresnel diffraction
In optics, the Fresnel diffraction equation for near-field diffraction, is an approximation of Kirchhoff-Fresnel diffraction that can be applied to the propagation of waves in the near field....

.

Negative index GRIN lenses

Gradient Index (GRIN) – The larger range of material response available in metamaterials should lead to improved GRIN lens design. In particular, since the permittivity and permeability of a metamaterial can be adjusted independently, metamaterial GRIN lenses can presumably be better matched to free space. The GRIN lens is constructed by using a slab of NIM with a variable index of refraction in the y direction, perpendicular to the direction of propagation z.

Transmission properties of an optical far-field superlens

Also in 2005 a group proposed a theoretical way to overcome the near-field limitation using a new device termed a far-field superlens (FSL), which is a properly designed periodically corrugated metallic slab-based superlens.

Metamaterial crystal lens

An idea for a far-field scanless optical microscopy, with a resolution below diffraction limit, was investigated by exploiting the special dispersion characteristics of an anisotropic metamaterial crystal.

Metamaterial lens goes from near field to far field

Imaging is experimentally demonstrated in the far field, taking the next step after near-field experiments. The key element is termed as a far-field superlens (FSL) which consists of a conventional superlens and a nanoscale coupler.

Focusing beyond the diffraction limit with far-field time reversal

An approach is presented for subwavelength focusing of microwaves using both a time-reversal mirror placed in the far field and a random distribution of scatterers placed in the near field of the focusing point.

Hyperlens

Once capability for near-field imaging was demonstrated, the next step was to project a near-field image into the far-field. This concept, including technique and materials, is dubbed "hyperlens".

The capability of a metamaterial-hyperlens for sub-diffraction-limited imaging is shown below.

Sub-diffraction imaging in the far field

With conventional optical lenses
Lens (optics)
A lens is an optical device with perfect or approximate axial symmetry which transmits and refracts light, converging or diverging the beam. A simple lens consists of a single optical element...

, the far field is a limit that is too distant for evanescent waves to arrive intact. When imaging an object, this limits the optical resolution
Optical resolution
Optical resolution describes the ability of an imaging system to resolve detail in the object that is being imaged.An imaging system may have many individual components including a lens and recording and display components...

 of lenses to the order of the wavelength
Wavelength
In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats.It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings, and is a...

 of light These non-propagating waves carry detailed information in the form of high spatial resolution, and overcome limitations. Therefore, projecting image details, normally limited by diffraction
Diffraction
Diffraction refers to various phenomena which occur when a wave encounters an obstacle. Italian scientist Francesco Maria Grimaldi coined the word "diffraction" and was the first to record accurate observations of the phenomenon in 1665...

 into the far field does require recovery of the evanescent waves.
In essence steps leading up to this investigation and demonstration was the employment of an anisotropic metamaterial with a hyperbolic
Hyperbolic geometry
In mathematics, hyperbolic geometry is a non-Euclidean geometry, meaning that the parallel postulate of Euclidean geometry is replaced...

 dispersion. The effect was such that ordinary evanescent waves propagate along the radial direction of the layered metamaterial. On a microscopic
Microscopic
The microscopic scale is the scale of size or length used to describe objects smaller than those that can easily be seen by the naked eye and which require a lens or microscope to see them clearly.-History:...

 level the large spatial frequency waves propagate through coupled surface plasmon excitations between the metallic layers.

In 2007, just such an anisotropic metamaterial was employed as a magnifying optical hyperlens. The hyperlens consisted of a curved periodic stack of thin silver
Silver
Silver is a metallic chemical element with the chemical symbol Ag and atomic number 47. A soft, white, lustrous transition metal, it has the highest electrical conductivity of any element and the highest thermal conductivity of any metal...

 and alumina (at 35 nanometers thick) deposited on a half-cylindrical cavity, and fabricated on a quartz substrate. The radial and tangential permittivities have different signs.

Upon illumination, the scattered evanescent field from the object enters the anisotropic medium and propagates along the radial direction. Combined with another effect of the metamaterial, a magnified image at the outer diffraction limit-boundary of the hyperlens occurs. Once the magnified feature is larger than (beyond) the diffraction limit, it can then be imaged with a conventional optical microscope
Microscope
A microscope is an instrument used to see objects that are too small for the naked eye. The science of investigating small objects using such an instrument is called microscopy...

, thus demonstrating magnification and projection of a sub-diffraction-limited image into the far field.

The hyperlens magnifies the object by transforming the scattered evanescent waves into propagating waves in the anisotropic medium, projecting a spatial resolution high-resolution image into the far field. This type of metamaterials-based lens, paired with a conventional optical lens is therefore able to reveal patterns too small to be discerned with an ordinary optical microscope. In one experiment, the lens was able to distinguish two 35-nanometer lines etched 150 nanometers apart. Without the metamaterials, the microscope showed only one thick line. (See diagram to the right).

In a control experiment, the line pair object was imaged without the hyperlens. The line pair could not be resolved because of the diffraction limit of the (optical) aperture was limited to 260 nm. (See panels B and C of the figure). Because the hyperlens supports the propagation of a very broad spectrum of wave vectors, it can magnify arbitrary objects with sub-diffraction-limited resolution. The recorded image of the letters "ON" shows the fine features of the object.

Although this work appears to be limited by being only a cylindrical hyperlens, the next step is to design a spherical lens. That lens will exhibit three-dimensional capability. Near-field optical microscopy uses a tip to scan an object. In contrast, this optical hyperlens magnifies an image that is sub-diffraction-limited. The magnified sub-diffraction image is then projected into the far field.

The optical hyperlens shows a notable potential for applications, such as real-time biomolecular imaging and nanolithography. Such a lens could be used to watch cellular processes that have been impossible to see. Conversely, it could be used to project an image with extremely fine features onto a photoresist as a first step in photolithography, a process used to make computer chips. The hyperlens also has applications for DVD technology.

Additionally, development of optical hyperlens for far-field imaging below the diffraction limit occurred with another group. This optical hyperlens was fabricated and characterized – capable of imaging sub-diffraction-limited objects in the far field.

Plasmon-assisted microscopy

Plasmon assisted microscopy. (See Near-field scanning optical microscope
Near-field scanning optical microscope
Near-field scanning optical microscopy is a microscopic technique for nanostructure investigation that breaks the far field resolution limit by exploiting the properties of evanescent waves. This is done by placing the detector very close to the specimen surface...

).

Super-imaging in the visible frequency range

Also in 2007 researchers demonstrated super imaging using materials, which create negative refractive index and lensing is achieved in the visible range.

Continual improvements in optical microscopy are needed to keep up with the progress in nanotechnology
Nanotechnology
Nanotechnology is the study of manipulating matter on an atomic and molecular scale. Generally, nanotechnology deals with developing materials, devices, or other structures possessing at least one dimension sized from 1 to 100 nanometres...

 and microbiology
Microbiology
Microbiology is the study of microorganisms, which are defined as any microscopic organism that comprises either a single cell , cell clusters or no cell at all . This includes eukaryotes, such as fungi and protists, and prokaryotes...

. Advancement in spatial resolution is key. Conventional optical microscopy is limited by a diffraction limit which is on the order of 200 nanometers (wavelength). This means that virus
Virus
A virus is a small infectious agent that can replicate only inside the living cells of organisms. Viruses infect all types of organisms, from animals and plants to bacteria and archaea...

es, protein
Protein
Proteins are biochemical compounds consisting of one or more polypeptides typically folded into a globular or fibrous form, facilitating a biological function. A polypeptide is a single linear polymer chain of amino acids bonded together by peptide bonds between the carboxyl and amino groups of...

s, DNA
DNA
Deoxyribonucleic acid is a nucleic acid that contains the genetic instructions used in the development and functioning of all known living organisms . The DNA segments that carry this genetic information are called genes, but other DNA sequences have structural purposes, or are involved in...

 molecules and many other samples are hard to observe with a regular (optical) microscope. The lens previously demonstrated with negative refractive index material, a thin planar superlens, does not provide magnification
Magnification
Magnification is the process of enlarging something only in appearance, not in physical size. This enlargement is quantified by a calculated number also called "magnification"...

 beyond the diffraction limit of conventional microscopes. Therefore, images smaller than the conventional diffraction limit will still be unavailable.

However, a new lens is fabricated, which is capable of magnification beyond the diffraction limit of conventional (optical) microscopes, and its integration into a regular far-field optical microscope was demonstrated.

Super resolution far-field microscopy techniques

By 2008 the diffraction limit has been surpassed and lateral imaging resolutions of 20 to 50 nm have been achieved by several "super-resolution" far-field microscopy techniques, including stimulated emission depletion (STED) and its related RESOLFT (reversible saturable optically linear fluorescent transitions) microscopy; saturated structured illumination microscopy (SSIM) ; stochastic optical reconstruction microscopy (STORM); photoactivated localization microscopy (PALM); and other methods using similar principles.

Cylindrical superlens via coordinate transformation

This began with a proposal by Sir John Pendry, in 2003. Magnifying the image required a new design concept in which the surface of the negatively refracting lens is curved. One cylinder touches another cylinder, resulting in a curved cylindrical lens which reproduced the contents of the smaller cylinder in magnified but undistorted form outside the larger cylinder. Coordinate transformations are required to curve the original perfect lens into the cylindrical, lens structure.

This was followed by a 36 page conceptual and mathematical proof in 2005, that the cylindrical superlens works in the quasistatic regime
Quasistatic process
In thermodynamics, a quasistatic process is a thermodynamic process that happens infinitely slowly. However, it is very important of note that no real process is quasistatic...

. The debate over the perfect lens is discussed first.

In 2007, a superlens utilizing coordinate transformation was again the subject. However, in addition to image transfer other useful operations were discussed; translation, rotation, mirroring and inversion as well as the superlens effect. Furthermore,
elements that perform magnification are described, which are free from geometric aberrations, on both the input and output sides while utilizing free space sourcing (rather than waveguide). These magnifying elements also operate in the near and far field, transferring the image from near field to far field.

The cylindrical magnifying superlens was experimentally demonstrated in 2007 by two groups, Liu et al. and Smolyaninov et al.

Nanohole array as a lens

A recent prior work (2007) demonstrated that a quasi-periodic array of nanoholes
Nanotechnology
Nanotechnology is the study of manipulating matter on an atomic and molecular scale. Generally, nanotechnology deals with developing materials, devices, or other structures possessing at least one dimension sized from 1 to 100 nanometres...

, in a metal
Metal
A metal , is an element, compound, or alloy that is a good conductor of both electricity and heat. Metals are usually malleable and shiny, that is they reflect most of incident light...

 screen, were able to focus the optical energy
Infrared
Infrared light is electromagnetic radiation with a wavelength longer than that of visible light, measured from the nominal edge of visible red light at 0.74 micrometres , and extending conventionally to 300 µm...

 of a plane wave
Plane wave
In the physics of wave propagation, a plane wave is a constant-frequency wave whose wavefronts are infinite parallel planes of constant peak-to-peak amplitude normal to the phase velocity vector....

 to form subwavelength spots (hot spots). The distances for the spots was a few tens of wavelength
Wavelength
In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats.It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings, and is a...

s on the other side of the wiktionary:array, or, in other words, opposite the side of the incident plane wave. The quasi-periodic array of nanoholes functioned as a light
Light
Light or visible light is electromagnetic radiation that is visible to the human eye, and is responsible for the sense of sight. Visible light has wavelength in a range from about 380 nanometres to about 740 nm, with a frequency range of about 405 THz to 790 THz...

 concentrator.

In June 2008, this was followed by the demonstrated capability of an array of quasi-crystal nanoholes in a metal screen. More than concentrating hot spots, an image of the point source
Point source
A point source is a localised, relatively small source of something.Point source may also refer to:*Point source , a localised source of pollution**Point source water pollution, water pollution with a localized source...

 is displayed a few tens of wavelengths from the array, on the other side of the array (the image plane). Also this type of array exhibited a 1 to 1 linear displacement, – from the location of the point source to its respective, parallel, location on the image plane. In other words from x to x + δx. For example, other point sources were similarly displaced from x' to x' + δx', from x^ to x^ + δx^, and from x^^ to x^^ + δx^^, and so on. Instead of functioning as a light concentrator, this performs the function of conventional lens imaging with a 1 to 1 correspondence, albeit with a point source.

However, resolution
Optical resolution
Optical resolution describes the ability of an imaging system to resolve detail in the object that is being imaged.An imaging system may have many individual components including a lens and recording and display components...

 of more complicated structures can be achieved as constructions of multiple point sources. The fine details, and brighter image, that are normally associated with the high numerical apertures of conventional lenses can be reliably produced. Notable applications for this technology
Technology
Technology is the making, usage, and knowledge of tools, machines, techniques, crafts, systems or methods of organization in order to solve a problem or perform a specific function. It can also refer to the collection of such tools, machinery, and procedures. The word technology comes ;...

 arise when conventional optics is not suitable for the task at hand. For example, this technology is better suited for X-ray imaging
X-ray
X-radiation is a form of electromagnetic radiation. X-rays have a wavelength in the range of 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz and energies in the range 120 eV to 120 keV. They are shorter in wavelength than UV rays and longer than gamma...

, or nano-optical
Photonic metamaterials
Photonic metamaterials, also known as Optical metamaterials, are a type of electromagnetic metamaterial, which are designed to interact with optical frequencies which are terahertz , infrared , and eventually, visible wavelengths. As a type of metamaterial, the periodic structures are made up of...

 circuits, and so forth.

Nanolens

In 2010, a nano-wire array prototype, described as a three-dimensional (3D) metamaterial
Metamaterial
Metamaterials are artificial materials engineered to have properties that may not be found in nature. Metamaterials usually gain their properties from structure rather than composition, using small inhomogeneities to create effective macroscopic behavior....

-nanolens, consisting of bulk nanowires deposited in a dielectric
Dielectric
A dielectric is an electrical insulator that can be polarized by an applied electric field. When a dielectric is placed in an electric field, electric charges do not flow through the material, as in a conductor, but only slightly shift from their average equilibrium positions causing dielectric...

 substrate has been fabricated and tested.

The metamaterial nanolens was constructed of millions of nanowires at 20 nanometers in diameter. These were precisely aligned, and a packaged configuration was applied. The lens is able to depict a clear, high-resolution image
Image
An image is an artifact, for example a two-dimensional picture, that has a similar appearance to some subject—usually a physical object or a person.-Characteristics:...

 of nano-sized objects because it uses both the normal propagating EM radiation, and evanescent waves to construct the image. Super-resolution imaging was demonstrated over a distance of 6 times the wavelength
Wavelength
In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats.It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings, and is a...

 (λ), in the far-field, with a resolution of at least λ/4. This is a significant improvement over previous research and demonstration of other near field and far field imaging, including nanohole arrays discussed below.

This was published in the January 11, 2010 issue of the journal Applied Physics Letters: B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar. Super-resolution imaging using a three-dimensional metamaterials nanolens. Appl. Phys. Lett. 96, 023114 (2010),

Light transmission properties of holey metal films

2009-12. The light transmission properties of holey metal films in the metamaterial limit, where the unit length of the periodic structures is much smaller than the operating wavelength, are analyzed theoretically.

Transporting an Image through a subwavelength hole

Theoretically it appears possible to transport a complex electromagnetic image through a tiny subwavelength hole with diameter considerably smaller than the diameter of the image, without losing the subwavelength details.

Nanoparticle imaging - quantum dots

When observing the complex processes in a living cell, significant processes (changes) or details are easy to overlook. This can more easily occur when watching changes that take a long time to unfold and require high-spatial-resolution imaging. However, recent research offers a solution to scrutinize activities that occur over hours or even days inside cells, potentially solving many of the mysteries associated with molecular-scale events occurring in these tiny organisms.

A joint research team, working at the National Institute of Standards and Technology (NIST) and the National Institute of Allergy and Infectious Diseases (NIAID), has discovered a method of using nanoparticles to illuminate the cellular interior to reveal these slow processes. Nanoparticles, thousands of times smaller than a cell, have a variety of applications. One type of nanoparticle called a quantum dot glows when exposed to light. These semiconductor particles can be coated with organic materials, which are tailored to be attracted to specific proteins within the part of a cell a scientist wishes to examine.

Notably, quantum dots last longer than many organic dyes and fluorescent proteins that were previously used to illuminate the interiors of cells. They also have the advantage of monitoring changes in cellular processes while most high-resolution techniques like electron microscopy only provide images of cellular processes frozen at one moment. Using quantum dots, cellular processes involving the dynamic motions of proteins, are observable (elucidated).

The research focused primarily on characterizing quantum dot properties, contrasting them with other imaging techniques. In one example, quantum dots were designed to target a specific type of human red blood cell protein that forms part of a network structure in the cell's inner membrane. When these proteins cluster together in a healthy cell, the network provides mechanical flexibility to the cell so it can squeeze through narrow capillaries and other tight spaces. But when the cell gets infected with the malaria parasite, the structure of the network protein changes.

Because the clustering mechanism is not well understood, it was decided to examine it with the quantum dots. If a technique could be developed to visualize the clustering, then the progress of a malaria infection could be understood, which has several distinct developmental stages.

Research efforts revealed that as the membrane proteins bunch up, the quantum dots attached to them are induced to cluster themselves and glow more brightly, permitting real time observation as the clustering of proteins progresses. More broadly, the research discovered that when quantum dots attach themselves to other nanomaterials, the dots' optical properties change in unique ways in each case. Furthermore, evidence was discovered that quantum dot optical properties are altered as the nanoscale environment changes, offering greater possibility of using quantum dots to sense the local biochemical environment inside cells.

Some concerns remain over toxicity and other properties. However, the overall findings indicate that quantum dots could be a valuable tool to investigate dynamic cellular processes.

The abstract from the related published research paper states (in part): Results are presented regarding the dynamic fluorescence properties of bioconjugated nanocrystals or quantum dots (QDs) in different chemical and physical environments. A variety of QD samples was prepared and compared: isolated individual QDs, QD aggregates, and QDs conjugated to other nanoscale materials...

A technical view of the original problem

The original deficiency related to the perfect lens is elucidated:

The general expansion of an EM field emanating from a source consists of both propagating waves and near-field or evanescent waves. An example of a 2-D line source with an electric field which has S-polarization will have plane waves consisting of propagating and evanescent components, which advance parallel to the interface. As both the propagating and the smaller evanescent waves advance in a direction parallel to the medium interface, evanescent waves decay in the direction of propagation. Ordinary (positive index) optical elements can refocus the propagating components, but the exponentially decaying inhomogeneous components are always lost, leading to the diffraction limit for focusing to an image.

A superlens is a lens which is capable of subwavelength imaging, allowing for magnification of near field rays
Near and far field
The near field and far field and the transition zone are regions of the electromagnetic radiation field that emanates from a transmitting antenna, or as a result of radiation scattering off an object...

. Conventional lenses have a resolution
Angular resolution
Angular resolution, or spatial resolution, describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object...

 on the order of one wavelength
Wavelength
In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave's shape repeats.It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings, and is a...

 due to the so-called diffraction limit. This limit hinders imaging very small objects, such as individual atoms, which are much smaller than the wavelength of visible light. A superlens is able to beat the diffraction limit. A very well known superlens is the perfect lens described by John Pendry, which uses a slab of material with a negative index of refraction as a flat lens. In theory, Pendry's perfect lens is capable of perfect focusing
Focus (optics)
In geometrical optics, a focus, also called an image point, is the point where light rays originating from a point on the object converge. Although the focus is conceptually a point, physically the focus has a spatial extent, called the blur circle. This non-ideal focusing may be caused by...

 — meaning that it can perfectly reproduce the electromagnetic field
Electromagnetic field
An electromagnetic field is a physical field produced by moving electrically charged objects. It affects the behavior of charged objects in the vicinity of the field. The electromagnetic field extends indefinitely throughout space and describes the electromagnetic interaction...

 of the source plane at the image plane.

The diffraction limit

The performance limitation of conventional lenses is due to the diffraction limit. Following Pendry (Pendry, 2000), the diffraction limit can be understood as follows. Consider an object and a lens placed along the z-axis so the rays from the object are traveling in the +z direction. The field emanating from the object can be written in terms of its angular spectrum method
Angular spectrum method
The angular spectrum method is a technique for modeling the propagation of a wave field. This technique involves expanding a complex wave field into a summation of infinite number of plane waves. Its mathematical origins lie in the field of Fourier Optics but it has been applied extensively in the...

, as a superposition
Superposition principle
In physics and systems theory, the superposition principle , also known as superposition property, states that, for all linear systems, the net response at a given place and time caused by two or more stimuli is the sum of the responses which would have been caused by each stimulus individually...

 of plane wave
Plane wave
In the physics of wave propagation, a plane wave is a constant-frequency wave whose wavefronts are infinite parallel planes of constant peak-to-peak amplitude normal to the phase velocity vector....

s:


where is a function of as:


Only the positive square root is taken as the energy is going in the +z direction. All of the components of the angular spectrum of the image for which is real are transmitted and re-focused by an ordinary lens. However, if


then becomes imaginary, and the wave is an evanescent wave
Evanescent wave
An evanescent wave is a nearfield standing wave with an intensity that exhibits exponential decay with distance from the boundary at which the wave was formed. Evanescent waves are a general property of wave-equations, and can in principle occur in any context to which a wave-equation applies...

 whose amplitude
Amplitude
Amplitude is the magnitude of change in the oscillating variable with each oscillation within an oscillating system. For example, sound waves in air are oscillations in atmospheric pressure and their amplitudes are proportional to the change in pressure during one oscillation...

 decays as the wave propagates
Wave propagation
Wave propagation is any of the ways in which waves travel.With respect to the direction of the oscillation relative to the propagation direction, we can distinguish between longitudinal wave and transverse waves....

 along the z-axis. This results in the loss of the high angular frequency
Angular frequency
In physics, angular frequency ω is a scalar measure of rotation rate. Angular frequency is the magnitude of the vector quantity angular velocity...

 components of the wave, which contain information about the high frequency (small scale) features of the object being imaged. The highest resolution that can be obtained can be expressed in terms of the wavelength:



A superlens overcomes the limit. A Pendry-type superlens has an index of n = −1 (ε = −1, µ = −1), and in such a material, transport of energy in the +z direction requires the z-component of the wave vector
Wave vector
In physics, a wave vector is a vector which helps describe a wave. Like any vector, it has a magnitude and direction, both of which are important: Its magnitude is either the wavenumber or angular wavenumber of the wave , and its direction is ordinarily the direction of wave propagation In...

 to have opposite sign:


For large angular frequencies, the evanescent wave now grows, so with proper lens thickness, all components of the angular spectrum can be transmitted through the lens undistorted. There are no problems with conservation of energy
Conservation of energy
The nineteenth century law of conservation of energy is a law of physics. It states that the total amount of energy in an isolated system remains constant over time. The total energy is said to be conserved over time...

, as evanescent waves carry none in the direction of growth: the Poynting vector
Poynting vector
In physics, the Poynting vector can be thought of as representing the directional energy flux density of an electromagnetic field. It is named after its inventor John Henry Poynting. Oliver Heaviside and Nikolay Umov independently co-invented the Poynting vector...

 is oriented perpendicularly to the direction of growth. For traveling waves inside a perfect lens, the Poynting vector points in direction opposite to the phase velocity.

Negative index of refraction and Pendry's perfect lens

Normally when a wave passes through the interface
Interface (chemistry)
An interface is a surface forming a common boundary among two different phases, such as an insoluble solid and a liquid, two immiscible liquids or a liquid and an insoluble gas. The importance of the interface depends on which type of system is being treated: the bigger the quotient area/volume,...

 of two materials, the wave appears on the opposite side of the normal
Surface normal
A surface normal, or simply normal, to a flat surface is a vector that is perpendicular to that surface. A normal to a non-flat surface at a point P on the surface is a vector perpendicular to the tangent plane to that surface at P. The word "normal" is also used as an adjective: a line normal to a...

. However, if the interface is between a material with a positive index of refraction and another material with a negative index of refraction, the wave will appear on the same side of the normal. John Pendry's perfect lens is a flat material where n = −1. Such a lens allows for near field rays—which normally decay due to the diffraction limit—to focus once within the lens and once outside the lens, allowing for subwavelength imaging.

Superlens construction

Superlens was believed impossible until John Pendry
John Pendry
Sir John Brian Pendry, FRS FInstP is an English theoretical physicist known for his research into refractive indexes and creation of the first practical "Invisibility Cloak"...

 showed in 2000 that a simple slab of left-handed material would do the job. The experimental realization of such a lens took, however, some more time, because it is not that easy to fabricate metamaterials with both negative permittivity and permeability
Permeability (electromagnetism)
In electromagnetism, permeability is the measure of the ability of a material to support the formation of a magnetic field within itself. In other words, it is the degree of magnetization that a material obtains in response to an applied magnetic field. Magnetic permeability is typically...

. Indeed, no such material exists naturally and construction of the required metamaterials is non-trivial. Furthermore, it was shown that the parameters of the material are extremely sensitive (the index must equal −1); small deviations make the subwavelength resolution unobservable. Due to the resonant nature of metamaterials, on which many (proposed) implementations of superlenses depend, metamaterials are highly dispersive. The sensitive nature of the superlens to the material parameters causes superlenses based on metamaterials to have a limited usable frequency range.

However, Pendry also suggested that a lens having only one negative parameter would form an approximate superlens, provided that the distances involved are also very small and provided that the source polarization is appropriate. For visible light this is a useful substitute, since engineering metamaterials with a negative permeability at the frequency of visible light is difficult. Metals are then a good alternative as they have negative permittivity (but not negative permeability). Pendry suggested using silver
Silver
Silver is a metallic chemical element with the chemical symbol Ag and atomic number 47. A soft, white, lustrous transition metal, it has the highest electrical conductivity of any element and the highest thermal conductivity of any metal...

 due to its relatively low loss at the predicted wavelength of operation (356 nm). In 2005, Pendry's suggestion was finally experimentally verified by two independent groups, both using thin layers of silver illuminated with UV light to produce "photographs" of objects smaller than the wavelength. Negative refraction of visible light has been experimentally verified in an yttrium orthovanadate
Yttrium orthovanadate
Yttrium orthovanadate is a transparent crystal. Undoped YVO4 is also used to make efficient high-power polarizing prisms similar to Glan–Taylor prisms.There are two principal applications for doped Yttrium orthovanadate:...

 (YVO4) bicrystal in 2003.

See also

  • Negative index metamaterials
    Negative index metamaterials
    Negative index metamaterials or negative index materials are artificial structures where the refractive index has a negative value over some frequency range. This does not occur in any known natural materials, and thus is only achievable with engineered structures known as metamaterials...

  • History of metamaterials
    History of metamaterials
    History of metamaterials shares a common history with artificial dielectrics in microwave engineering, as it developed just after World War II. However, there are seminal explorations of artificial materials for manipulating electromagnetic waves at the end of the 19th century...

  • Metamaterial cloaking
    Metamaterial cloaking
    Metamaterial cloaking is the scientific application of metamaterials in order to achieve invisibility-cloaking. This is accomplished by manipulating the paths traversed by light through a novel optical material....

  • Photonic metamaterials
    Photonic metamaterials
    Photonic metamaterials, also known as Optical metamaterials, are a type of electromagnetic metamaterial, which are designed to interact with optical frequencies which are terahertz , infrared , and eventually, visible wavelengths. As a type of metamaterial, the periodic structures are made up of...

  • Metamaterial
    Metamaterial
    Metamaterials are artificial materials engineered to have properties that may not be found in nature. Metamaterials usually gain their properties from structure rather than composition, using small inhomogeneities to create effective macroscopic behavior....

  • Metamaterial antennas
    Metamaterial antennas
    Metamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space...

  • Nonlinear metamaterials
    Nonlinear metamaterials
    A nonlinear metamaterial is an artificially constructed material that can exhibit properties not found in nature. Its response to electromagnetic radiation can be characterized by its permittivity and material permeability. The product of the permittivity and permeability results in the refractive...

  • Photonic crystal
    Photonic crystal
    Photonic crystals are periodic optical nanostructures that are designed to affect the motion of photons in a similar way that periodicity of a semiconductor crystal affects the motion of electrons...

  • Seismic metamaterials
    Seismic metamaterials
    Seismic metamaterials, are metamaterials which are designed to counteract the adverse effects of seismic waves on artificial structures, which exist on or near the surface of the earth...

  • Split-ring resonator
  • Acoustic metamaterials
    Acoustic metamaterials
    Acoustic metamaterials are artificially fabricated materials designed to control, direct, and manipulate sound in the form of sonic, infrasonic, or ultrasonic waves, as these might occur in gases, liquids, and solids. The hereditary line into acoustic metamaterials follows from theory and research...

  • Metamaterial absorber
    Metamaterial absorber
    A metamaterial absorber manipulates the loss components of the complex effective parameters, permittivity and magnetic permeability of metamaterials, to create a material with particularly high absorption...


  • Plasmonic metamaterials
    Plasmonic metamaterials
    Plasmonic metamaterials are negative index metamaterials that exploit surface plasmons, which are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating...

  • Terahertz metamaterials
    Terahertz metamaterials
    Terahertz metamaterials are a new class of composite, artificial materials which interact at terahertz frequencies. The terahertz frequency range used in materials research is usually defined as 0.1 to 10 THz...

  • Tunable metamaterials
    Tunable metamaterials
    A tunable metamaterial is a metamaterial with a variable response to an incident electromagnetic wave. This includes remotely controlling how an incident electromagnetic wave interacts with a metamaterial. This means the capablitity to determine whether the EM wave is transmitted, reflected, or...

  • Transformation optics
    Transformation optics
    Transformation optics represents an advancement in the design of optical devices. It is the basis for conceptualizing complex tools in the electromagnetic regime which allows for novel control of light, also known as electromagnetic waves. The mathematics underpinning transformation optics is...

  • Theories of cloaking
Academic journals
  • Metamaterials (journal)
    Metamaterials (journal)
    Metamaterials is a peer-reviewed scientific journal that was established in March 2007. It is published by Elsevier in association with the Metamorphose Network of Excellence. The Coordinating Editor is Mikhail Lapine. The journal is published quarterly, with occasional special issues...

Metamaterials books
  • Metamaterials Handbook
    Metamaterials Handbook
    Metamaterials Handbook is a two-volume handbook on metamaterials edited by Filippo Capolino .The series is designed to cover all theory and application topics related to electromagnetic metamaterials. Disciplines have combined to study, and develop electromagnetic metamaterials...

  • Metamaterials: Physics and Engineering Explorations
    Metamaterials: Physics and Engineering Explorations
    Metamaterials: Physics and Engineering Explorations is a book length introduction to the fundamental research and advancements in electromagnetic composite substances known as electromagnetic metamaterials. The discussion encompasses examination of the physics of metamaterial interactions, the...



Metamaterials scientists
  • Richard W. Ziolkowski
    Richard W. Ziolkowski
    Richard W. Ziolkowski is a past president of the IEEE Antennas and Propagation Society , and a former vice president of this same society . In 2006 he was awarded OSA Fellow. He is also an IEEE Fellow....

  • John Pendry
    John Pendry
    Sir John Brian Pendry, FRS FInstP is an English theoretical physicist known for his research into refractive indexes and creation of the first practical "Invisibility Cloak"...

  • David R. Smith
    David R. Smith
    David R. Smith is a renowned American physicist and professor of electrical and computer engineering at Duke University in North Carolina. Smith's research focuses on electromagnetic metamaterials, or materials with a negative index of refraction...

  • Nader Engheta
    Nader Engheta
    Nader Engheta is an Iranian scientist and engineer. He has significantly contributed to novel artificial materials, photonics, nano-structured materials, novel graphene materials, and plasmonics....

  • Ulf Leonhardt
    Ulf Leonhardt
    Ulf Leonhardt is a German scientist, born in Schlema, Germany . In 2006, he published the first scientific paper on invisibility cloaking with metamaterials at the same time Pendry's group published their paper in the journal Science...

  • Vladimir Shalaev
    Vladimir Shalaev
    Vladimir M. Shalaev , the Robert and Anne Burnett Professor of Electrical and Computer Engineering and Professor of Biomedical Engineering at Purdue University, specializes in metamaterials, transformation optics, nanophotonics and plasmonics...



External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK